Editing Hypervisor Reverse Engineering

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
<span style="background:red; color:#ffffff;">Warning, this page is way too long and is voted to be split into seperate sections</span>
== HSPRG ==
The hypervisor stores a pointer to some structure per LPAR in HSPRG0 register.


----
There are actually 2 HSPRG0 values: one for each thread of Cell CPU&nbsp;&#33;&#33;&#33;
= Difference between Debug Firmware HV and Retail HV =


There is no difference between debug firmware lv1.self and retail firmware lv1.self
There is a HSPRG0 array at 0x8(-0x69A0(HSPRG0)) + 0x20.
The differences reside on the repository nodes loaded because of policies/flags.


[http://www.mirrorcreator.com/files/1DKLUPMC/160_192_341_355_--CEX_DECR_-_LV1.rar_links DECR/Tool + CEX/Retail LV1.self 1.60 1.92 3.41 3.55]
== LPAR ==
LPAR = Logical Partition


= HSPRG  =
lpar1 starts at 0x&lt;unknown&gt;, and its belived to be the memory space wherre lv1 stores its variables, flags and other data.


*The hypervisor stores a pointer to some structures per LPAR in HSPRG0 register.
lpar2 starts at 0x80000000000 and it's belived to be the memory space where lv2 stores its variables, flags and other data.
*'''There are actually 2 HSPRG0 values: one for each thread of Cell CPU'''&nbsp;!!!
*There is a HSPRG0 array at 0x8(-0x69A0(HSPRG0)) + 0x20.


= LPAR =
The pointer to active LPAR is stored at -0x67E8(HSPRG0).


LPAR = Logical Partition
=== vtable ===
0x0033CA40 (3.15)
=== Member variables ===
*offset 0x38 - some pointer
*offset 0x50 - LPAR id (8 bytes)
*offset 0x70 - pointer to VAS id bitmap
*offset 0x78 - power of 2 of word size from VAS id bitmap (4 bytes), equal to 6
*offset 0x7C - number of 64-bit words in VAS id bitmap(4 bytes)


lpar1 starts at 0x&lt;unknown&gt;, and it's believed to be the memory space where lv1 stores its variables, flags and other data.
== Interrupt handling ==


lpar2 starts at 0x80000000000 and it's believed to be the memory space where lv2 stores its variables, flags and other data.  
The pointer to the interrupt handler that is called e.g. when an external interrupt occurs is at -0x69F0(HSPRG0).  


<br>
0x00001930 (3.15 and 2.60)


The pointer to active LPAR is stored at -0x67E8(HSPRG0).
=== Interrupt vector tables ===


== vtable  ==
There are 2 interrupt vector tables. One for each thread. The pointer to these tables is at -0x6950(HSPRG0).


0x0033CA40 (3.15)  
*offset 0x8 - IIC memory base address (8 bytes)  
*offset 0x10 - thread register offset (8 bytes)
*offset 0x18 - start of interrupt vector table (19 entries, each entry 32 bytes)
==== Interrupt vector table entry ====
*offset 0x0 - pointer to interrupt handler
*offset 0x8 - TOC
*offset 0x10 - 0
*offset 0x18 - parameter to interrupt handler


== Member variables  ==
==== Interrupt handlers ====
===== Spurious interrupt handler =====
*0x002BC174 (3.15)


offset 0x38 - some pointer
===== RSX =====
*0x00219A44 (3.15)
*0x002176FC (2.60)


offset 0x50 - LPAR id (8 bytes)  
===== SB bus =====
*0x002B9CC4 (3.15)  


offset 0x70 - pointer to VAS id bitmap
===== I/O address translation =====
*0x002CD7D8 (3.15)
*0x002C9214 (2.60)


offset 0x78 - power of 2 of word size from VAS id bitmap (4 bytes), equal to 6
===== Performance monitor =====
*0x002F0584 (3.15)
*0x002EB1B0 (2.60)  


offset 0x7C - number of 64-bit words in VAS id bitmap(4 bytes)
===== Token manager =====
*0x002BBA9C (3.15)
*0x002B754C (2.60)  


= Interrupt handling  =
== HV call ==
The address of HV table is stored at -0x6FC8(HSPRG0).


The pointer to the interrupt handler that is called e.g. when an external interrupt occurs is at -0x69F0(HSPRG0).  
The address of HV table size is stored at -0x6FD0(HSPRG0).


0x00001930 (3.15 and 2.60)  
=== HV call ===
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Id
!  Name
!  Description
|-
|  62
|  lv1_undocumented_function_62
|  SPE (isolation, it updates a SLB entry, writes to SLB_Index, SLB_VSID, SLB_ESID and SLB_Invalidate_Entry registers)
|-
|  89
|  lv1_undocumented_function_89
|  SPE (writes to MFC_TLB_Invalidate_Entry register)
|-
|  99
|  lv1_authenticate_program_segment
|  SPE (isolation, syscall 0x10043, syscall 0x10042, syscall 0x1004A)
|-
|  102
|  lv1_undocumented_function_102
|  Returns current TB ticks
|-
|  137
|  lv1_undocumented_function_137
|  SPE
|-
|  138
|  lv1_undocumented_function_138
|  SPE
|-
|  167
|  lv1_undocumented_function_167
|  SPE (isolation, reads from SPU_Out_Intr_Mbox and MFC_CNTL registers)
|-
|  168
|  lv1_undocumented_function_168
|  SPE (isolation, writes to MFC_CNTL register)
|-
|  195
|  lv1_undocumented_function_195
|  WLAN Gelic device
|-
|  196
|  lv1_undocumented_function_196
|  WLAN Gelic device
|-
|  200
|  lv1_undocumented_function_200
|  SPE (isolation)
|-
|  201
|  lv1_undocumented_function_201
|  SPE (isolation)
|-
|  209
|  lv1_undocumented_function_209
|  SPE (isolation)
|-
|  250
|  lv1_undocumented_function_250
|  Storage device
|-
|  251
|  lv1_undocumented_function_251
|  Storage device
|-
|  252
|  lv1_undocumented_function_252
|  Storage device
|-
|  253
|  lv1_undocumented_function_253
|  Storage device
|}
==== Initializing HV Call Table ====
===== set_lv1_hvcall_table =====
*0x002C02B4 (3.41)
*0x002C1F04 (3.15)
*0x002C2B4C (3.55)


== Interrupt vector tables  ==
This function sets pointer to HV Call Table and the size of HV Call Table in HSPRG context of a LPAR.


There are 2 interrupt vector tables. One for each thread. The pointer to these tables is at -0x6950(HSPRG0).
===== set_lv1_hvcall_table_entry_invalid =====
*0x002C1F28 (3.15)
*0x002C02D8 (3.41)
*0x002C2B70 (3.55)


offset 0x8 - IIC memory base address (8 bytes)
This function initializes an entry in HV Call Table to the Invalid HV Call function.


offset 0x10 - thread register offset (8 bytes)
=== Memory HV call ===
*All memory HV calls branch to ''lv1_mm_call''
*''lv1_mm_call'' has it's own function table
*Memory HV call number = HV call number


offset 0x18 - start of interrupt vector table (19 entries, each entry 32 bytes)
==== Memory HV call table ====
Each entry is a pointer to a function TOC entry.


=== Interrupt vector table entry  ===
table size = 256


offset 0x0 - pointer to interrupt handler
*0x00364208 (3.15)
*0x00362308 (3.41)
*0x00366088 (3.55)


offset 0x8 - TOC
==== Memory HV calls ====
*lv1_map_htab - 0x002D595C (3.15)
*lv1_unmap_htab - 0x002D56B8 (3.15)
*lv1_allocate_memory - 0x002D72F0 (3.15)
*lv1_release_memory - 0x002D66A4 (3.15)
*lv1_query_logical_partition_address_region_info - 0x002C9B24 (3.15)
*lv1_create_repository_node - 0x002DD014 (3.15)
*lv1_get_repository_node_value - 0x002DD260 (3.15)
*lv1_undocumented_function_231 - 0x0030B560 (3.15)


offset 0x10 - 0
== System call ==
HV Processes do not use HV calls. They use syscalls only.
=== System call handler ===
*0x002974D8 (3.15)
*0x00292F6C (2.60)


offset 0x18 - parameter to interrupt handler
There are 2 system call tables in HV. The first one stores system calls 0 - 36. The second one stores system calls 0x10000 - 0x100FF.


=== Interrupt handlers  ===
=== System call table 0 - 36 ===
*0x0035FAE8 (3.15)
*0x00358ED0 (2.60)


==== Spurious interrupt handler  ====
==== System call numbers ====
*0x1 - getpid(void)
*0x2 - getppid(void)
*0x3 - fork(void)
*0x4 - exit
*0x5 - exec(filename)
*0x6 - wait(status)
*0x7 - open(filename)
*0x8 - close(fd)
*0x9 - read
*0xA - write
*0xB - seek
*0xC - unlink(filename)
*0xD - signal
*0xE - kill(pid, signal type)
*0xF - brk
*0x10 - socket(af, type, protocol) (supports only address family 0x1F, type 0x0 and protocol 0x0)
*0x11 - bind
*0x12 - listen(fd, backlog)
*0x13 - accept
*0x14 - connect
*0x15 -&nbsp;?
*0x16 - pause(void)
*0x17 - sleep(seconds)
*0x18 - mmap(addr, size, prot, flags, fd, offset)
*0x19 - munmap
*0x1A - some fs func for directories, perhaps readdir
*0x1B -&nbsp;?
*0x1C - map_pages (used for alloc)
*0x1D - unmap_pages (used for free)
*0x1E - select
*0x1F - getcwd
*0x20 -&nbsp;?
*0x21 - alarm
*0x22 - ioctl
*0x23 - _map_pages
*0x24 - _unmap_pages


0x002BC174 (3.15)  
=== System call table 0x10000 - 0x100FF ===
*0x0035DE78 (3.15)
*0x00357260 (2.60)


==== RSX  ====
==== System call numbers ====
*0x10000 - allocate_memory_region(LPAR id, size, log2 of page size,&nbsp;?,&nbsp;?)
*0x10001 - lpar_query_address_region_info
*0x10002 - lpar_memory_addr_to_phys_addr(LPAR id, LPAR address, physical addr)
*0x10005 - construct_logical_pu
*0x10007 - activate_logical_pu(LPAR id, PPE id)
*0x10009 - construct_logical_partition(0, LPAR id, outlet)
*0x1000E - release_memory_region(LPAR id, memory region address)
*0x1001A - construct_event_receive_port
*0x10024 - shutdown_logical_partition(LPAR id, shutdown command)
*0x10025 - destruct_logical_partition(LPAR id)
*0x10026 - get_logical_partition_info
*0x1002C - construct_scheduling_table
*0x1002D - set_scheduling_slot
*0x10032 - accesses system console
*0x10036 - accesses system console
*0x10040 - construct_spe_type_1(SPE id, shaddow_addr)
*0x10041 - destruct_spe(SPE id)
*0x10042 - decrypt_lv2_self(spe id, LPAR auth id, SELF file image ptr, LPAR memory address)
*0x10043 - load_spe_module(spe id, SCE module ptr, arg1, arg2, arg3, arg4)
*0x10044 - disable_spe_execution
*0x10045 - set_spe_interrupt_mask
*0x10046 - read_spe_problem_state_register(spe id, register offset, value)
*0x10047 - write_spe_problem_state_register(spe id, register offset, value)
*0x1004B - disable_spe_loading
*0x10053 - pmi_set_guest_os_mode
*0x10081 - accesses system console
*0x10084 - construct_virtual_uart(LPAR id, VUART id, VUART data buffer size)
*0x10085 - destruct_virtual_uart(LPAR id, VUART id)
*0x10088 - RSX_syscall_10088(LPAR id)
*0x10089 - RSX_syscall_10089
*0x1008A - RSX_syscall_1008A
*0x100BE - lv1_ioctl
*0x100C0 - create_repository_node(LPAR id)
*0x100C1 - get_repository_node_value(LPAR id)
*0x100C2 - modify_repository_node_value(LPAR id)
*0x100C3 - remove_repository_node_value(LPAR id)


0x00219A44 (3.15)  
== Process ==
=== Process table ===
HV supports only 32 processes simultaneously. The number of processes currently running in HV is stored at address 0x0035EA54 (3.15) and 0x00357E3C (2.60).


0x002176FC (2.60)  
The process table is an array of 32 process table entries.
*0x0035E850 (3.15)
*0x00357C38 (2.60)  
==== Process table entry ====
*offset 0x0 - process status&nbsp;? (8 bytes)
*offset 0x8 - pointer to Process object


==== SB bus  ====
=== create_new_proc ===
This function creates a new Process object.
*0x00298E2C (3.15)
*0x002948BC (2.60)


0x002B9CC4 (3.15)
==== Parameters ====
*r3 - pointer to parent Process object
*r4 -&nbsp;?


==== I/O address translation  ====
=== copy_user_data ===
This function copies data to/from user space.
*0x00299688 (3.15)
*0x00295118 (2.60)


0x002CD7D8 (3.15)  
==== Parameters ====
*r3 - pointer to Process object
*r4 - some address in address space of Process
*r5 - pointer to buffer in HV space
*r6 - size to copy
*r7 -&nbsp;?
*r8 - direction of copy (0 - copy from user space,&nbsp;&#33;= 0 - copy to user space)  
*r9 -&nbsp;?


0x002C9214 (2.60)  
=== vtable ===
Processes have no vtables. That means they have no virtual functions.
=== Member variables ===
*offset 0x0 - PID (4 bytes)
*offset 0x8 - pointer to parent Process object
*offset 0x10 - pointer to AddressSpace object
*offset 0x30 - pointer to first PThread object of process
*offset 0x38 - array of signal handlers (192 * 8 bytes)
*offset 0x638 - pointer to pointer to ELF image
*offset 0x640 - start of file table (20 * 24 bytes)
*offset 0x820 - exit status (4 bytes)  
*offset 0x898 - pointer to Inode object of current directory
*offset 0x8A8 - some pointer


==== Performance monitor  ====
==== Signals ====
A process can have upto 192 signal handlers. For example, signal 9 is SIGKILL. A signal handler for SIGKILL cannot be installed and it cannot be ignored.


0x002F0584 (3.15)
A process does not have a signal mask. Every thread of a process has it's own signal mask.  


0x002EB1B0 (2.60)
===== Signal constants =====
*0x9 - SIGKILL
*0xE - SIGALRM
*0x20 - SIGSPUMB
*0x21 - SIGSPUMB_SL
*0x22 - SIGSPUSTOP
*0x23 - SIGSPUSTOP_SL
*0x24 - SIGSPUDMA
*0x26 - SIGSPUTIMEOUT
*0x27 - SIGSPUERR
*0x41 - SIGSHUTDOWN


==== Token manager  ====
==== File table ====
The file table has 20 entries. So, a process can have at most 20 files opened simultaneously. Each entry is 24 bytes large.
*offset 0x0 - entry valid or invalid (1 byte), 0 - invalid, 1 - valid
*offset 0x8 - pointer to object with File interface
*offset 0x10 - current file position (8 bytes)


0x002BBA9C (3.15)
=== Process_EA_to_RA ===
This function translates an effective process address to real address.  


0x002B754C (2.60)  
*0x00297E08 (3.15)  


= HV call  =
=== Objects ===
Here are the addresses of Process objects i could identify in HV dump 3.15:


*The address of HV table is stored at -0x6FC8(HSPRG0).  
*0x006BB0D0 (PID 0)
*The address of HV table size is stored at -0x6FD0(HSPRG0).
*0x0012C010 (PID 3) - ss_server3.fself
 
*0x000915D0 (PID 5) - ss_server2.fself
== HV call  ==
*0x000E4D70 (PID 6) - ss_server1.fself
''editorial note: The table listed here was moved/merged to a seperate page : [[HV Syscalls]]''
*0x0012C8D0 (PID 9) - sysmgr_ss.fself
 
=== Initializing HV Call Table ===


==== set_lv1_hvcall_table ====
Here are the addresses of Process objects i could identify in HV dump 2.60:
*0x006B7580 (PID 0)
*0x00135F90 (PID 3)
*0x000862D0 (PID 5)
*0x000A9870 (PID 6)
*0x00084B80 (PID 9)


0x002C02B4 (3.41)
== PThread ==
All PThread objects of the same Process object are linked together in a list.
=== vtable ===
*0x003556D8 (3.15)
*0x0034ECC0 (2.60)  


0x002C1F04 (3.15)
*offset 0x60 - pointer to TOC entry of system call handler


0x002C2B4C (3.55)
=== Member variables ===
*offset 0x10 - pointer to next PThread object of Process
*offset 0x18 - Thread object
*offset 0x2B8 -&nbsp;? (4 bytes)
*offset 0x2C0 - pointer to TOC of some function
*offset 0x2C8 - pointer to TOC of some function
*offset 0x348 - some conter (4 bytes)
*offset 0x3C0 - pointer to Process object that owns PThread object
*offset 0x3F8 - signal pending mask (3 * 8 bytes = 192 signals)  
*offset 0x440 - ConditionVariable object


This function sets pointer to HV Call Table and the size of HV Call Table in HSPRG context of a LPAR.
=== Signals ===
A PThread has it's own signal mask, independant of all other PThreads in the same process.  


==== set_lv1_hvcall_table_entry_invalid ====
=== Methods ===
*wait_for_my_turn(Pthread ptr,&nbsp;?, sleep interruptible flag) = wakeup status - 0x00296FB0 (3.15)


0x002C1F28 (3.15)
== Thread ==
=== get_current_thread ===
This function returns the pointer to current running thread.
*0x0028B994 (3.15)
*0x0028744C (2.60)  


0x002C02D8 (3.41)
=== vtable ===
*0x00355750 (3.15)  


0x002C2B70 (3.55)
=== Member variables ===
*offset 0x288 - some pointer
*offset 0x290 - some pointer


This function initializes an entry in HV Call Table to the Invalid HV Call function.
== AddressSpace ==
=== vtable ===
*0x003549A0 (3.15)
*0x0034DF88 (2.60)


== Memory HV call  ==
=== Member variables ===
*offset 0x8 - Mutex object
*offset 0x40 - AddressProtectionDomain object
*offset 0x50 - some pointer
*offset 0xC0 - some counter (4 bytes)


*All memory HV calls branch to '''lv1_mm_call'''
*'''lv1_mm_call''' has it's own function table
*Memory HV call number = HV call number


=== Memory HV call table ===
=== AddressSpace_EA_to_RA ===
*0x002874D0 (3.15)


*Each entry is a pointer to a function TOC entry.  
== AddressProtectionDomain  ==
*table size = 256
=== vtable  ===
*0x00354980 (3.15)


0x00364208 (3.15)
===  Member variables  ===
*offset 0x8 - pointer to previous AddressProtectionDomain object
*offset 0x10 - pointer to next AddressProtectionDomain object
*offset 0x18 - poiinter to pointer to SLB entries
*offset 0x20 - pointer to AddressSpace object that owns this object
*offset 0x34 - pointer to previous ProtectionPage
*offset 0x3C - pointer to next ProtectionPage
*offset 0x48 - Mutex object


0x00362308 (3.41)
== ProtectionPage  ==
===  vtable  ===
*none


0x00366088 (3.55)
=== Member variables  ===
*offset 0x0 - RA (8 bytes)
*offset 0x8 - EA (4 bytes)
*offset 0x10 - pointer to previous ProtectionPage (4 bytes)
*offset 0x14 - pointer to next ProtectionPage (4 bytes)  


=== Memory HV calls ===
== Mutex  ==
=== vtable ===
*0x00354D08 (3.15)
*0x0034E2F0 (2.60)


lv1_map_htab - 0x002D595C (3.15)  
=== Member variables  ===
*offset 0x18 -&nbsp;? (4 bytes)
*offset 0x1C -&nbsp;? (4 bytes)  


lv1_unmap_htab - 0x002D56B8 (3.15)  
== ConditionVariable  ==
=== vtable  ===
*0x003549C0 (3.15)  


lv1_allocate_memory - 0x002D72F0 (3.15)
*offset 0x20 - wait


lv1_release_memory - 0x002D66A4 (3.15)
===  Member variables  ===
*offset 0x20 - pointer to Mutex object


lv1_query_logical_partition_address_region_info - 0x002C9B24 (3.15)
==  File interface  ==
===  vtable  ===
*offset 0x8 - ?
*offset 0x28 - open
*offset 0x30 - close
*offset 0x38 - read
*offset 0x40 - write
*offset 0x50 - mmap
*offset 0x58 - ioctl


lv1_create_repository_node - 0x002DD014 (3.15)
== StorageRegionFile  ==
Flash device file class.  


lv1_get_repository_node_value - 0x002DD260 (3.15)  
=== vtable  ===
*0x003569F8 (3.15)  


lv1_undocumented_function_231 - 0x0030B560 (3.15)
== VUARTFile  ==
VUART device file class.  


= System call =
=== vtable ===
*0x00356458 (3.15)


HV Processes do not use HV calls. They use syscalls only.  
== STDLCFile  ==
Console device file class.  


== System call handler ==
=== vtable ===
*0x003561F8 (3.15)


0x002974D8 (3.15)  
=== Member variables  ===
*offset 0x20 - reference counter (8 bytes)
*offset 0x28 - free buffer space&nbsp;? (8 bytes)  


0x00292F6C (2.60)  
== SocketFile  ==
===  vtable  ===
*0x00355DB0 (3.15)  


There are 2 system call tables in HV. The first one stores system calls 0 - 36. The second one stores system calls 0x10000 - 0x100FF.
*offset 0xB0 - bind


== UX System call table 0 - 36 ==
== RegionManager ==
=== vtable  ===
*0x00355F80 (3.15)


0x0035FAE8 (3.15)  
== Inode  ==
===  DirectoryInode  ===
==== vtable  ====
*0x00355788 (3.15)  


0x00358ED0 (2.60)
*offset 0x20 - link
*offset 0x28 - unlink


=== System call numbers ===
=== get_root_inode ===
0x0 - void eosh(void) //end_of_signal_handling(void)
This function returns the pointer to the Inode object of the root directory.


0x1 - pid_t getpid(void)  
*0x0029C124 (3.15)
*0x00297BB4 (2.60)  


0x2 - pid_t getppid(void)  
===  vtable  ===
*0x00334E50 (3.15)  


0x3 - pid_t fork(void)
*offset 0x30 - lookup


0x4 - void exit(int status)
==  File system  ==
===  Console device file objects  ===
Here is the list of console device file objects i found in HV dump 3.15:


0x5 - void execv(const char *path, char *const argv[])
*console


0x6 - void wait(int *status)  
====  vtable  ====
*0x003561F8 (3.15)  


0x7 - int open(const char *path, int flags)
===  Flash device file objects  ===
Here is the list of flash device file objects i found in HV dump 3.15:


0x8 - void close(int fd)
*/dev/eflash0
*/dev/eflash1
*/dev/rflash0
*/dev/rflash1
*/dev/rflash_1x
*/dev/rflash_1xp


0x9 - ssize_t read(int fd, void *buf, unsigned int nbyte)  
==== vtable ====
*0x003569F8 (3.15)  


0xA - ssize_t write(int fd, const void *buf, unsigned int nbyte)
=== IOIF device file objects ===
Here is the list of IOIF device file objects i found in HV dump 3.15:


0xB - void lseek(int fd, long offset, int whence)
*/dev/ioif0


0xC - unlink(const char *path)  
====  vtable  ====
*0x00356688 (3.15)  


0xD - void signal(int sig, void *func(int sig))
====  Member variables  ====
*0x360 = MMIO base address


0xE - int kill(int pid, int signal_type)
===  SD detector device file objects  ===
Here is the list of SD detector device file objects i found in HV dump 3.15:


0xF - int brk(void *)
*/dev/sd_detector


0x10 - int socket(int af, int type, int protocol) (supports only address family 0x1F, type 0x0 and protocol 0x0)  
====  vtable  ====
*0x00356B48 (3.15)  


0x11 - int bind(int sockfd , const sockaddr *addr, unsigned int addrlen)
===  NET device file objects  ===
Here is the list of NET device file objects i found in HV dump 3.15:


0x12 - int listen(int sockfd, int backlog)
*/dev/net0


0x13 - int accept(int sockfd, sockaddr *addr, unsigned int *addrlen)  
====  vtable  ====
*0x00356DE8 (3.15)  


0x14 - int connect(int sockfd, const sockaddr *serv_addr, unsigned int addrlen)
===  INODES  ===
INODE OBJECT
*0x04: previos inode
*0x08: next inodes
*0x38: path
*0x358: childer_inode


0x15 - void putchar(int c)  
MFS_ROOT_INODE
*(2.60) 0x3580B0
*0x60 = ROOT_INODE


0x16 - int pause(void)


0x17 - int sleep(unsigned int seconds)
SOME ADDRESSES IN 2.60
*0x60C010: "/dev" inode
*0x6AA580: "/proc" inode


0x18 - int mmap(void *addr, unsigned long size, int prot, int flags, int fd, long offset, void *mapped_addr)
using linked list you can follow all inodes


0x19 - int munmap (void *addr, unsigned long size)
==  Repository  ==
*Each LPAR has it's own node repository
*Repository nodes are stored in a hash table which can have several sub-hash tables.


0x1A - int chdir(const char *path)
===  RepositoryNode  ===
====  vtable  ====
*0x00357F58 (3.15)  


0x1B - void getchar(char *c)
====  Member variables  ====
*offset 0x30 - pointer to next RepositoryNode obj
*offset 0x38 - 2nd hash value of name (4 bytes)
*offset 0x40 - 1st field name (8 bytes)
*offset 0x48 - 2nd field name (8 bytes)
*offset 0x50 - 3rd field name (8 bytes)
*offset 0x58 - 4th field name (8 bytes)
*offset 0x60 -&nbsp;? (4 bytes)
*offset 0x68 - 1st field value (8 bytes)
*offset 0x70 - 2nd field value (8 bytes)  


0x1C - map_pages(...) (used for alloc)
====  Hash Function  ====
*The name of a repository node is hashed and 2 hash values (2 32bit values) are produced.  
*The 1st hash value is used to select a sub-hash table.  
*The 2nd hash value is used to find a sub-hash table bucket.
*Repository nodes in a hash bucket are ordered by the 2nd hash value.


0x1D - unmap_pages(...) (used for free)  
void hash(unsigned long long n1,
unsigned long long n2,
unsigned long long n3,
unsigned long long n4,
unsigned long *h1,
unsigned long *h2)
{
  unsigned long long h;
  unsigned long hl;
  h = ((((n1 ^ n4) &gt;&gt; 32) ^ (n2 ^ n3)) ^ (((n2 ^ n3) &gt;&gt; 32) ^ (n1 ^ n4))) &amp; ~0xC0000000ULL;
  *h1 = h &amp; 0xFFFFFFFFULL;
  h = ((h &amp; 0x55555555ULL) &lt;&lt; 1) &#124; ((h &amp; 0xAAAAAAAAULL) &gt;&gt; 1);
  h = ((h &amp; 0x33333333ULL) &lt;&lt; 2) &#124; ((h &amp; 0xCCCCCCCCULL) &gt;&gt; 2);
  h = ((h &amp; 0xF0F0F0FULL) &lt;&lt; 4) &#124; ((h &amp; 0xF0F0F0F0ULL) &gt;&gt; 4);
  hl = (h &lt;&lt; 8) &#124; ((h &amp; 0xFF000000ULL) &gt;&gt; 24);
  hl = (hl &amp; ~0xFF000000UL) &#124; ((h &amp; 0xFFULL) &lt;&lt; 24);
  hl = (hl &amp; ~0x0000FF00UL) &#124; (((h &lt;&lt; 24) &#124; (h &gt;&gt; 8)) &amp; 0x0000FF00ULL);
  hl |= 0x1;
  *h2 = hl;
}


0x1E - select(...)
===  Repository nodes from HV 3.15  ===
Dump of all repository nodes from HV 3.15


0x1F - getcwd(...)
===  Repository nodes from HV 3.41 dump made from GameOS  ===
Dump of all repository nodes from HV 3.41 dump made from GameOS


0x20 - Not used
==  Buses  ==
===  SB bus  ===
*type - 4
*index - 1
*num_devices - 4 (repository node says this but there are more devices&nbsp;&#33;&#33;&#33;)


0x21 - alarm(...)
===  Storage bus  ===
*type - 5
*index - 4
*num_devices - 4


0x22 - ioctl(...)
==  SB bus subsystem  ==
===  vtable  ===
*0x00352600 (3.15)  


0x23 - pme_memalign(...)
===  Member variables  ===
*offset 0x10 - MMIO memory base address
*offset 0x20 - array of 16 pointers to SB devices (0 - Gelic device, 1 - USB device)  


0x24 - ?
===  Objects  ===
*0x00349528 - pointer to pointer to SB bus subsystem object


== PMI System call table 0x10000 - 0x100FF ==
=== Memory base address  ===
*0x24000000000


0x0035DE78 (3.15)
All SB bus device MMIO addresses are relative to this memory address.  


0x00357260 (2.60)  
===  SB device MMIO/DMA memory region  ===
====  vtable  ====
*0x000x352308 (3.15)  


=== System call numbers ===
==== Member variables  ====
*offset 0x18 - pointer to previous bus memory region object
*offset 0x20 - pointer to next bus memory region object
*offset 0x30 - relative bus memory start address
*offset 0x38 - size of bus memory region


0x10000 - allocate_memory(LPAR id, size, log2 of page size,&nbsp;?,&nbsp;?) / construct_memory_segment
===  SB bus device  ===
====  vtable  ====
*0x00352620 (3.15)  


0x10001 - query_logical_partition_address_region_info
====  Member variables  ====
*offset 0x18 - array of pointers to MMIO memory region objects owned by device (8 * 8 bytes)
*offset 0x60 - pointer to first DMA region object
*offset 0x6C - device opened flag (1 byte, 0 - not opened, 1 - already opened)
*offset 0x70 - id of LPAR that opened this device
*offset 0x90 - pointer to an object that contains the address of interrupt handler for this device and SB bus interrupt index


0x10002 - translate_logical_partition_to_physical_address(LPAR id, LPAR address, physical addr)
===  Gelic device (Network Interface)  ===
*device id = 0
*interrupt index = 8


0x10003 - map_physical_address_region
====  MMIO regions  ====
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Index
!  Relative Bus Start Address
!  Absolute Bus Start Address
!  Size
|-  
|  0
|  0x2800
|  0x24000002800
|  0x200
|-
|  1
|  0x3004000
|  0x24003004000
|  0x1000
|-
|  2
|  -
|  -
|  -
|-
|  3
|  -
|  -
|  -
|-
|  4
|  -
|  -
|  -
|-
|  5
|  -
|  -
|  -
|-
|  6
|  -
|  -
|  -
|-
|  7
|  -
|  -
|  -
|}


0x10004 - unmap_physical_address_region
====  DMA regions  ====
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Relative Bus Start Address
!  Absolute Bus Start Address
!  Size
|-  
|  0xA0000000
|  -
|  0x8000
|-
|  0xC0000000
|  -
|  0x10000000
|}


0x10005 - construct_logical_pu
===  SATA Controller 1 device  ===
*device id = 1
*interrupt index = 49


0x10006 - destruct_logical_pu
====  MMIO regions  ====
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Index
!  Relative Bus Start Address
!  Absolute Bus Start Address
!  Size
|-  
|  0
|  0x2000
|  0x24000002000
|  0x200
|-
|  1
|  0x3000000
|  0x24003000000
|  0x1000
|-
|  2
|  0x3800000
|  0x24003800000
|  0x1000
|-
|  3
|  0x3802000
|  0x24003802000
|  0x1000
|-
|  4
|  -
|  -
|  -
|-
|  5
|  -
|  -
|  -
|-
|  6
|  -
|  -
|  -
|-
|  7
|  -
|  -
|  -
|}


0x10007 - activate_logical_pu(LPAR id, PPE id)
====  DMA regions  ====
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Relative Bus Start Address
!  Absolute Bus Start Address
!  Size
|-  
|  0xA0000000
|  -
|  0x1000
|-
|  0xA0001000
|  -
|  0x1000
|-
|  0xA0002000
|  -
|  0x1000
|}


0x10009 - construct_logical_partition(0, LPAR id, outlet)
===  SATA Controller 2 device  ===
*device id = 2
*interrupt index = 13


0x1000A - get_logical_console_info
====  MMIO regions  ====
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Index
!  Relative Bus Start Address
!  Absolute Bus Start Address
!  Size
|-  
|  0
|  0x2200
|  0x24000002200
|  0x200
|-
|  1
|  0x3001000
|  0x24003001000
|  0x1000
|-
|  2
|  0x3801000
|  0x24003801000
|  0x1000
|-
|  3
|  0x3803000
|  0x24003803000
|  0x1000
|-
|  4
|  -
|  -
|  -
|-
|  5
|  -
|  -
|  -
|-
|  6
|  -
|  -
|  -
|-
|  7
|  -
|  -
|  -
|}


0x1000B - get_remote_file_size
====  DMA regions  ====
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Relative Bus Start Address
!  Absolute Bus Start Address
!  Size
|-  
|  0xA0000000
|  -
|  0x1000
|-
|  0xA0001000
|  -
|  0x1000
|-
|  0xA0002000
|  -
|  0x1000
|}


0x1000C - read_remote_file
===  USB Controller 1 device  ===
*device id = 3


0x1000D - write_remote_file
====  MMIO regions  ====
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Index
!  Relative Bus Start Address
!  Absolute Bus Start Address
!  Size
|-  
|  0
|  0x2400
|  0x24000002400
|  0x200
|-
|  1
|  0x3010000
|  0x24003010000
|  0x10000
|-
|  2
|  0x3810000
|  0x24003810000
|  0x10000
|-
|  3
|  -
|  -
|  -
|-
|  4
|  -
|  -
|  -
|-
|  5
|  -
|  -
|  -
|-
|  6
|  -
|  -
|  -
|-
|  7
|  -
|  -
|  -
|}


0x1000E - release_memory_region(LPAR id, memory region address)
====  DMA regions  ====
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Relative Bus Start Address
!  Absolute Bus Start Address
!  Size
|-  
|  0xC0000000
|  -
|  0x10000000
|-
|  0xD0000000
|  -
|  0x10000000
|}


0x1001A - construct_event_receive_port
===  USB Controller 2 device  ===
*device id = 4


0x1001B - destruct_event_receive_port
====  MMIO regions  ====
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Index
!  Relative Bus Start Address
!  Absolute Bus Start Address
!  Size
|-  
|  0
|  0x2600
|  0x24000002600
|  0x200
|-
|  1
|  0x3020000
|  0x24003020000
|  0x10000
|-
|  2
|  0x3820000
|  0x24003820000
|  0x10000
|-
|  3
|  -
|  -
|  -
|-
|  4
|  -
|  -
|  -
|-
|  5
|  -
|  -
|  -
|-
|  6
|  -
|  -
|  -
|-
|  7
|  -
|  -
|  -
|}


0x1001C - request_to_connect_event_ports
====  DMA regions  ====
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Relative Bus Start Address
!  Absolute Bus Start Address
!  Size
|-  
|  0xC0000000
|  -
|  0x10000000
|-
|  0xD0000000
|  -
|  0x10000000
|}


0x1001D - connect_event_ports
===  ENCDEC device  ===
*device id = 7
*interrupt index = 5


0x1001E - destruct_event_send_port
====  MMIO regions  ====


0x1001F - send_event_externally
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Index
!  Relative Bus Start Address
!  Absolute Bus Start Address
!  Size
|-  
|  0
|  0x2C00
|  0x24000002C00
|  0x200
|-
|  1
|  0x3005000
|  0x24003005000
|  0x1000
|-
|  2
|  0x3006000
|  0x24003006000
|  0x1000
|-
|  3
|  -
|  -
|  -
|-
|  4
|  -
|  -
|  -
|-
|  5
|  -
|  -
|  -
|-
|  6
|  -
|  -
|  -
|-
|  7
|  -
|  -
|  -
|}


0x10020 - get_status_of_event_send_port
====  DMA regions  ====
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Relative Bus Start Address
!  Absolute Bus Start Address
!  Size
|-  
|  0x80010000
|  -
|  0x10000
|-
|  0x80004000
|  -
|  0x4000
|-
|  0x80001000
|  -
|  0x1000
|-
|  0x80003000
|  -
|  0x1000
|-
|  0x80008000
|  -
|  0x1000
|-
|  0x80009000
|  -
|  0x1000
|-
|  0x80040000
|  -
|  0x10000
|-
|  0x8000A000
|  -
|  0x1000
|-
|  0x90020000
|  -
|  0x20000
|-
|  0xC0000000
|  -
|  0x10000
|-
|  0xC0040000
|  -
|  0x40000
|}


0x10021 - get_event_port_connection_request
===  FLASH Controller device (StarShip - SS)  ===
*device id = 9
*interrupt index = 41


0x10022 - end_of_control_signal_processing
====  MMIO regions  ====
FLASH controller doesn't have MMIO regions.


0x10024 - shutdown_logical_partition(LPAR id, shutdown command)
====  DMA regions  ====


0x10025 - destruct_logical_partition(LPAR id)
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Relative Bus Start Address
!  Absolute Bus Start Address
!  Size
|-  
|  0x80000000
|  -
|  0x1000
|-
|  0x80020000
|  -
|  0x20000
|-
|  0x80002000
|  -
|  0x1000
|-
|  0x90000000
|  -
|  0x20000
|}


0x10026 - get_logical_partition_info
===  SB Bus Interrupt Handling  ===
*There is a table of interrupt handlers for SB devices
*The size of table is 64
*The main SB bus interrupt handler is at 0x002B9CC4 (3.15)
*The main interrupt handler reads interrupt index and dispatches interrupts


0x10027 - read_privilege_set
====  Interrupt Index  ====
*The main SB bus interrupt handler reads 2 32-bit values from addresses 0x24000008100 and 0x0x24000008104
*The interrupt index is calculated from these values


0x10028 - modify_privilege_set
====  Interrupt Handler Table  ====
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Interrupt
!  Description
!  Address in HV
|-  
|  5
|  ENCDEC device
|  0x00275C60 (3.15)
|-
|  6
|  EH EPCIC internal
|  0x0023B6B0 (3.15)
|-
|  8
|  Gelic device
|  0x00245330 (3.15)
|-
|  12
|  ATA interrupt handler
|  0x0026B984 (3.15)
|-
|  13
|  ATA interrupt handler
|  0x0026B984 (3.15)
|-
|  14
|  Spider SC
|  0x0020A68C (3.15)
|-
|  29
|  SBERR
|  0x0023AA50 (3.15)
|-
|  30
|  SBERR
|  0x0023AA50 (3.15)
|-
|  41
|  EBUS (Flash StartShip)
|  0x002814EC (3.15)
|-
|  49
|  ATA media interrupt handler
|  0x00268A8C (3.15)
|-
|  50
|  Flash&nbsp;?
|  0x00280B24 (3.15)
|-
|  55
|  EH EPCIC SERR
|  0x0023B67C (3.15)
|}


0x10029 - get_remote_file_size_long_name
==  Storage bus subsystem  ==
===  vtable  ===
*0x00353AC8 (3.15)


0x1002A - read_remote_file_long_name
===  Member variables  ===
offset 0xEE8 - table of pointers to storage device objects (7 * 8 bytes, max 7 devices)


0x1002B - write_remote_file_long_name
===  Storage device class  ===
====  Member variables  ====
*offset 0x8 - device id (8 bytes)
*offset 0xD50 - device id (8 bytes)
*offset 0xD60 - pointer to ENCDEC SB bus device object


0x1002C - construct_scheduling_table
====  Region Manager ====
*Each storage device has a Region Manager (i call it like that)
*Region Manager stores information about each Region of the storage device
*All Regions of a Region Manager are linked together
*Free Regions of a Region Manager are linked together also
*A Region Manager can have at most 8 Regions


0x1002D - set_scheduling_slot
=====  Region =====
*Each storage device can have at most 8 regions (0-7)
*Each region has ACL table
*HV checks region ACLs before allowing access to the region
*Each region has a start sector that is an offset from the physical first sector of the storage device and a number of sectors
*The start sector passed to lv1 storage hvcalls is relative to the start sector of the region passed to the lv1 storage hvcall
Region ACL
*offset 0x0 - LPAR AUTH ID (8 bytes)
*offset 0x8 - access rigths (8 bytes)
*offset 0x10 - entry valid flag: 0 - invalid, 1 - valid (1 byte)


0x1002E - load_scheduling_table
Region Access Protection
*Before a storage region is accessed, HV checks access rights of the caller.
*Repository node ss.laid (LPAR authentication id) is evaluated for this purpose.
*If LPAR has a repository node ios.ata.region0.access (value doesn't matter) then the access rights check never fails.
*ALL storage accesses from LPAR 1 are allowed
*If (flags &amp; 0x100000002)&nbsp;&#33;= 0 then access rights check is skipped&nbsp;&#33;&#33;&#33;.


0x10032 - poweroff
I tested on HV 3.41 with flags 0x2 and got access to regions which were denied by policy (LV1_DENIED_BY_POLICY result).


0x10033 - get_remote_file_name
=====  Storage Device Partition Table =====
* Each storage device has a Partition Table
* Partition Table contains information about each region on the storage device


0x10034 - allocate_cp_channel
=====  Methods =====
*lv1_storage_create_region (lv1_undocumented_function_250) - 0x00301328 (3.15)
*lv1_storage_delete_region (lv1_undocumented_function_251) - 0x003011E8 (3.15)
*lv1_storage_set_region_acl (lv1_undocumented_function_252) - 0x00300F3C (3.15)
*lv1_storage_get_region_acl (lv1_undocumented_function_253) - 0x00301090 (3.15)
*storage_device_create_region - 0x00253988 (3.15)
*storage_device_delete_region - 0x00253BE8 (3.15)
*storage_device_region_set_acl - 0x00252C80 (3.15)
*storage_device_region_get_acl - 0x00252710 (3.15)
*storage_region_mgr_create_region - 0x0025A530 (3.15)
*storage_region_mgr_delete_region - 0x0025BA64 (3.15)
*storage_region_mgr_set_acl - 0x0025A140 (3.15)
*storage_region_mgr_get_acl - 0x0025A298 (3.15)
*storage_region_mgr_update_partition_table - 0x00259924 (3.15)
*storage_region_acl_entry_reset - 0x0025C1A8 (3.15)
*storage_region_acl_entry_check_laid - 0x0025C1FC (3.15)
*storage_region_overlap - 0x0025C094 (3.15)
*storage_region_check_access - 0x00259EC8 (3.15)


0x10035 - release_cp_channel
===  Storage subsystem device  ===
device id = -1


0x10036 - power_down
*The storage subsystem is a storage device itself.
*It's a psuedo device used to notify a LPAR when storage devices become e.g. ready.
*Linux implements a loop and reads from this device and process notifications (adds new devices dynamically).


0x10037 - ?
====  Notification Events  ====
List of supported notification events:


0x10038 - ?
*Notify Device Ready (0x1)
*Notify Region Probe (0x2)
*Notify Region Update (0x4)


0x10039 - ?
===  RBD device  ===
*On Linux, ENCDEC and RBD devices are mapped to the storage device with device id 0.
*On GameOS, ENCDEC device has device id 0 and RBD device has device id 2.


0x10040 - construct_spe_type_1(SPE id, shaddow_addr) / construct_logical_spu
*device id = 0
*block size = 2048
*/dev/rbd0


0x10041 - destruct_spe(SPE id) / destruct_logical_spu
*The RBD storage device uses ENCDEC device.


0x10042 - decrypt_lv2_self(spe id, LPAR auth id, SELF file image ptr, LPAR memory address)  
====  vtable  ====
*0x00354288 (3.15)


0x10043 - load_spe_module(spe id, SCE module ptr, arg1, arg2, arg3, arg4)  
====  Member variables ====
*offset 0x1808 - request table (0x58 * 32 bytes)


0x10044 - disable_spe_execution
====  Regions  ====
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Index
!  Start sector
!  Number of sectors
|-  
|  0
|  0x0
|  0x7FFFFFFF
|-
|  1
|  -
|  -
|-
|  2
|  -
|  -
|-
|  3
|  -
|  -
|-
|  4
|  -
|  -
|-
|  5
|  -
|  -
|-
|  6
|  -
|  -
|-
|  7
|  -
|  -
|}


0x10045 - read_spu_puint_mb(unsigned long spu_id, unsigned long msg)
====  Supported Device Commands  ====
Here is the list of commands supported by RBD storage device.


0x10046 - read_spe_problem_state_register(spe id, register offset, value) / read_spu_problem_state_area_register
*The commands can be used with HV call lv1_storage_send_device_command.
*However, before a command is executed HV does bit manipulation with it and checks it against the value of repository node ss.laid or also called LPAR authentication ID. If this test fails then the command is NOT executed.


0x10047 - write_spe_problem_state_register(spe id, register offset, value) / write_spu_problem_state_area_register
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Command
!  Description
|-  
|  0x1
|  LV1_STORAGE_SEND_ATAPI_COMMAND
|-
|  0x10
|  ATAPI Read Capacity
|-
|  0x11
|  ATAPI Get Configuration
|-
|  0x13
|  ATAPI Read TOC
|-
|  0x1A
|  ATAPI Get Event
|}====  /dev/rbd0  ====
*This LPAR 1 device accesses RBD storage device.
*A write to this device sends a device command to RBD storage device.
===  ENCDEC Device ===
bus id = 4


0x1004A - install_revoke_list
device id = 0


0x1004B - disable_spe_loading
*ENCDEC device has a request table of size 32.
====  Member variables ====
offset 0xDC0 - request table (0x58 * 32 bytes)


0x1004C - install_access_control_table?
====  Methods ====
encdec_device_initialize - 0x00273524 (3.15)


0x1004D - get_storage_status?
InitializeENCDEC - 0x00277310 (3.15)


0x1004E - get_region_table_bits?
ENCDEC_ConnectBusDriver - 0x00275A98 (3.15)


0x1004F - commit_region_update?
encdec_interrupt_handler - 0x00275C60 (3.15)


0x10050 - abort_region_update?
encdec_process_interrupt - 0x0027526C (3.15)


0x10051 - set_storage_tampered?
encdec_device_enqueue_decsec_request - 0x00273738 (3.15)


0x10053 - pmi_set_guest_os_mode
encdec_device_do_request - 0x00273EA8 (3.15)


0x1007F - pause
encdec_device_do_SS_request - 0x00274940 (3.15)


0x10080 - get_total_execution_time
Encdec_KickDMA - 0x00277118 (3.15)


0x10081 - reset
encdec_device_is_in_testmode - 0x002756E0 (3.15)


0x10083 - construct_logical_rsx
is_encdec_in_testmode - 0x002732D0 (3.15)


0x10084 - construct_virtual_uart(LPAR id, VUART id, VUART data buffer size)
====  ENCDEC Device Commands  ====
*EdecKgen1 command is used e.g. by Storage Manager Service 0x5003 to generate random numbers. Storage Manager performs this command through LPAR 1 device /dev/encdec0.


0x10085 - destruct_virtual_uart(LPAR id, VUART id)  
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Command
!  Description
|-  
|  0x81
|  EdecKgen1
|-
|  0x82
|  EdecKgen2
|-
|  0x83
|  EdecKset/EdecKset NG
|-
|  0x84
|  EdecKgenFlash
|-
|  0x85
|  Encrypts/decrypts sectors (This command cannot be executed through ioctl interface&nbsp;&#33;&#33;&#33;)
|-
|  0x86
|  Encdec decsec (This command cannot be executed through ioctl interface&nbsp;&#33;&#33;&#33;)
|-
|  0x87
|  EdecSBClear
|}


0x10086 - establish_virtual_uart_channel
=====  EdecKgen1 Command (0x81) =====
*First, ENCDEC device key generator is flashed by executing the operation which is also performed during EdecKgenFlash command.
*0x30 bytes of data are written to MMIO registers of ENCDEC device.
*0x40 bytes of data are read from MMIO registers of ENCDEC device.
*The base address of MMIO registers used in this command is 0x24003006000.
*I tested this command by directly communicating with ENCDEC device from GameOS by using HV call lv1_storage_send_device_command and it returns random data.
Here is the data i sent to ENCDEC device:


0x10088 - RSX_syscall_10088(LPAR id)


0x10089 - RSX_syscall_10089
Offset      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
00000000  00 01 00 30 72 A7 88 EC  FC A4 06 71 4C B1 50 C9  ...0r§ˆìü¤.qL±PÉ
00000010  FB E0 06 C2 74 B5 84 C4  E6 BD 1E 55 4E 36 E9 C9  ûà.Âtµ„Äæ½.UN6éÉ
00000020  D6 09 BC B4 79 A6 BC DE  60 A5 B2 41 C7 15 68 68  Ö.¼´y¦¼Þ`¥²AÇ.hh
00000030  82 1D 8F D6 00 00 00 00  00 00 00 00 00 00 00 00  ‚. Ö............


0x1008A - RSX_syscall_1008A
Here is the data i received back from ENCDEC device:


0x100BE - lv1_ioctl
Offset      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
00000000  00 02 00 00 57 CF 06 AF  53 85 1B B8 49 37 06 28  ....WÏ.¯S….¸I7.(
00000010  51 8D 4E F9 EF 76 E2 C7  17 EF 41 14 FA 6C 96 A8  Q NùïvâÇ.ïA.úl–¨
00000020  7E 41 43 96 15 9A 0D 71  A9 B6 A6 B0 F1 96 15 C5  ~AC–.š.q©¶¦°ñ–.Å
00000030  30 25 C3 8E 6F AC FB 7F  E7 2A FB E2 36 E1 85 92  0%ÃŽo¬û ç*ûâ6á…’
00000040  99 66 DB EC 00 00 00 00  00 00 00 00 00 00 00 00  ™fÛì............


0x100C0 - create_repository_node(LPAR id)
Here is another data i received back from ENCDEC device by using the same command and data:


0x100C1 - get_repository_node_value(LPAR id)


0x100C2 - modify_repository_node_value(LPAR id)  
Offset      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
00000000  00 02 00 00 57 CF 06 AF  53 85 1B B8 49 37 06 28  ....WÏ.¯S….¸I7.(
00000010  51 8D 4E F9 EF 76 E2 C7  17 EF 41 14 FA 6C 96 A8  Q NùïvâÇ.ïA.úl–¨
00000020  7E 41 43 96 17 08 75 F6  66 2F 32 5A 9E 3E E7 FD  ~AC–..uöf/2Zž&gt;çý
00000030  16 3E 18 CA B2 5E 90 84  29 7F 98 BC 73 36 0E 7B  .&gt;.ʲ^ „) ˜¼s6.{
00000040  7D EC B6 37 00 00 00 00  00 00 00 00 00 00 00 00  }ì¶7............


0x100C3 - remove_repository_node(LPAR id)
=====  EdecKgen2 Command (0x82) =====
*The base address of MMIO registers used in this command is 0x24003006000.


= Process =
===== EdecKset Command (0x83) =====
=====  EdecKgenFlash Command (0x84) =====
*The base address of MMIO registers used in this command is 0x24003006000.
*The command reads 4 bytes from address 0x240030060A0, sets bit 1 to 1 (old value &#124; 0x2) and writes the new value to the same address.


== Process table ==
===== Encdec decsec Command (0x86) =====
*This command is used to decrypt/encrypt sectors.
*FLASH, HDD and RBD storage devices use this command to decrypt/encrypt sectors.
*This command cannot be executed through lv1_storage_send_device_command HV call, it's used by HV only internally.


HV supports only 32 processes simultaneously. The number of processes currently running in HV is stored at address 0x0035EA54 (3.15) and 0x00357E3C (2.60).  
=====  EdecSBClear Command (0x87) =====
*The command expects arg2 to be 4 or else it returns with an error.
*This command is used e.g. by Storage Manager service 0x5002 when ATA keys are deleted.


The process table is an array of 32 process table entries.
====  Test Mode ====
* ENCDEC device has Test Mode* Some HV functions test it by reading a 4 byte value from address 0x24003005200. If this value is 0 then ENCDEC device is NOT in Test Mode.


0x0036C930 (4.30)
====  ENCDEC Request ====
*offset 0x34 - start sector (4 bytes)
*offset 0x38 - sector count (4 bytes)
*offset 0x3C - sector size (4 bytes)
*offset 0x40 - key (4 bytes)
*offset 0x44 - 0 = decrypt, 1 = encrypt (4 bytes)


0x0036C8B0 (4.21)
====  Encrypting and Decrypting Sectors ====
*HV passes to ENCDEC device addresses of 2 buffers: ENCDEC User Buffer and ENCDEC Descriptor Buffer.
*ENCDEC User Buffer contains the following information: Start Sector, Sector Count, Sector Size and Key=====  ENCDEC User Buffer =====
offset 0x0 - start sector (4 bytes)
*offset 0x4 - sector count (4 bytes)
*offset 0x8 - sector size (4 bytes)
*offset 0xC - key (4 bytes)


0x00365458 (4.11)
===  FLASH device  ===
device id = 1


0x0035F8D0 (3.55)
*The FLASH device uses ENCDEC device.
====  vtable  ====
*0x00354450 (3.15)  


0x0035C550 (3.41)
====  Member variables ====
offset 0x18F0 - request table (0x58 * 16 bytes)


0x0035E850 (3.15)
====  Regions  ====
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Index
!  Start sector
!  Number of sectors
|-
|  0
|  0x0
|  0x8000
|-
|  1
|  0x8
|  0x77F8
|-
|  2
|  0x7900
|  0x100
|-
3
|  0x7A00
|  0x400
|-
|  4
|  -
|  -
|-
|  5
|  -
|  -
|-
|  6
|  -
|  -
|-
|  7
|  -
|  -
|}


0x00357C38 (2.60)
====  Supported Device Commands  ====
Here is the list of commands supported by FLASH StarShip 2 storage device.  


=== Process table entry  ===
*The commands can be used with HV call lv1_storage_send_device_command.
*However, before a command is executed HV does bit manipulation with it and checks it against the value of repository node ss.laid or also called LPAR authentication ID. If this test fails then the command is NOT executed.


offset 0x0 - process status&nbsp;? (8 bytes)  
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Command
!  Description
|-
|  0x31
|  Dummy (This command does nothing, returns success immediately)
|-
|  0xA2
|  -
|-
|  0xA3
|  -
|-
|  0xA4
|  -
|-
|  0xA6
|  SS2 HW Reset
|-
|  0xAC
|  -
|-
|  0xAD
|  TEST
|}


offset 0x8 - pointer to Process object
====  /dev/eflash1 and /dev/rflash1  ====
*These LPAR 1 devices access region 0 of FLASH storage device.
*/dev/rflash1 is 16MB large
*There is no file system on /dev/rflash1
*There is some sort of TOC (Table Of Contents) stored in it. It contains file names, offsets and sizes.
*On /dev/rflash1 you will find lv0, lv1ldr, lv2_lernel.self and all the other important SELFs.
*The files are encryted of course.


== create_new_proc ==
===== Content of /dev/rflash1 (FLASH storage device region 0, size 16 MB)  =====
*There is a main TOC which describes different regions on /dev/rflash1*It seems that TOC 0xC0000 and TOC 0x7C0000 contain the same files but from different SDK versions.
*TOC 0xC0000 is SDK version 3.41 and TOC 0x7C0000 is SDK version 3.30 (look at the content of files sdk_version).
*I guess it's because when i bought my PS 3 Slim it had Firmware 3.30 and i updated it to 3.41 for PSGroove.
*TOC on /dev/rflash1 is used by HV Processes to locate files and load them into memory, e.g. SPU modules. E.g. Process 6 loads spu_utoken_processor.self to decrypt and verify user tokens or SPL which runs in Process 5 loads spp_verifier.self from there in order to decrypt and verify profile files. And Update Manager stores e.g. there files.


This function creates a new Process object.  
TOC Entry  A TOC entry is 0x30 bytes large.  
*offset 0x0 - relative offset from this TOC to entry data
*offset 0x8 - entry data size
*offset 0x10 - entry name (max 32 characters)


0x00298E2C (3.15)
Main TOC  Here is a list of regions/files stored on /dev/rflash1 i found in HV 3.41 and dumped with PSGroove:


0x002948BC (2.60)


=== Parameters ===
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Entry Name
!  TOC Offset
!  Entry TOC Index
!  Entry Relative Offset
!  Entry Absolute Offset
!  Entry Size
|-
|  asecure_loader
|  0x400
|  0
|  0x400
|  0x810
|  0x2E800
|-
|  eEID
|  0x400
|  1
|  0x2EC00
|  0x2F010
|  0x10000
|-
|  cISD
|  0x400
|  2
|  0x3EC00
|  0x3F010
|  0x800
|-
|  cCSD
|  0x400
|  3
|  0x3F400
|  0x3F810
|  0x800
|-
|  trvk_prg0
|  0x400
|  4
|  0x3FC00
|  0x40010
|  0x20000
|-
|  trvk_prg1
|  0x400
|  5
|  0x5FC00
|  0x60010
|  0x20000
|-
|  trvk_pkg0
|  0x400
|  6
|  0x7FC00
|  0x80010
|  0x20000
|-
|  trvk_pkg1
|  0x400
|  7
|  0x9FC00
|  0xA0010
|  0x20000
|-
|  ros0
|  0x400
|  8
|  0xBFC00
|  0xC0010
|  0x700000
|-
|  ros1
|  0x400
|  9
|  0x7BFC00
|  0x7C0010
|  0x700000
|-
|  cvtrm
|  0x400
|  10
|  0xEBFC00
|  0xEC0010
|  0x40000
|} asecure_loader Region TOC Here is a list of files stored on /dev/rflash1 i found in HV 3.41 and dumped with PSGroove:


r3 - pointer to parent Process object


r4 -&nbsp;?
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Entry Name
!  TOC Offset
!  Entry TOC Index
!  Entry Relative Offset
!  Entry Absolute Offset
!  Entry Size
|-
|  metldr
|  0x800
|  0
|  0x40
|  0x840
|  0xE920
|} ros1 Region TOC  Here is a list of files stored on /dev/rflash1 i found in HV 3.41 and dumped with PSGroove:


== copy_user_data  ==


This function copies data to/from user space.  
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Entry Name
!  TOC Offset
!  Entry TOC Index
!  Entry Relative Offset
!  Entry Absolute Offset
!  Entry Size
|-
|  creserved_0
|  0xC0000
|  0
|  0x460
|  0xC0470
|  0x40000
|-
|  sdk_version
|  0xC0000
|  1
|  0x40460
|  0x100470
|  0x8
|-
|  lv1ldr
|  0xC0000
|  2
|  0x40480
|  0x100490
|  0x1E948
|-
|  lv2ldr
|  0xC0000
|  3
|  0x5EE00
|  0x11EE10
|  0x16FF0
|-
|  isoldr
|  0xC0000
|  4
|  0x75E00
|  0x135E10
|  0x13074
|-
|  appldr
|  0xC0000
|  5
|  0x88E80
|  0x148E90
|  0x1E254
|-
|  spu_pkg_rvk_verifier.self
|  0xC0000
|  6
|  0xA70D4
|  0x1670E4
|  0xFACC
|-
|  spu_token_processor.self
|  0xC0000
|  7
|  0xB6BA0
|  0x176BB0
|  0x5C94
|-
|  spu_utoken_processor.self
|  0xC0000
|  8
|  0xBC834
|  0x17C844
|  0x65D0
|-
|  sc_iso.self
|  0xC0000
|  9
|  0xC2E04
|  0x182E14
|  0x1532C
|-
|  aim_spu_module.self
|  0xC0000
|  10
|  0xD8130
|  0x198140
|  0x4498
|-
|  spp_verifier.self
|  0xC0000
|  11
|  0xDC5C8
|  0x19C5D8
|  0xD7F0
|-
|  mc_iso_spu_module.self
|  0xC0000
|  12
|  0xE9DB8
|  0x1A9DC8
|  0x808C
|-
|  me_iso_spu_module.self
|  0xC0000
|  13
|  0xF1E44
|  0x1B1E54
|  0x88B8
|-
|  sv_iso_spu_module.self
|  0xC0000
|  14
|  0xFA6FC
|  0x1BA70C
|  0xC078
|-
|  sb_iso_spu_module.self
|  0xC0000
|  15
|  0x106774
|  0x1C6784
|  0x5DB0
|-
|  default.spp
|  0xC0000
|  16
|  0x10C524
|  0x1CC534
|  0x22A0
|-
|  lv1.self
|  0xC0000
|  17
|  0x10E800
|  0x1CE810
|  0x127DF0
|-
|  lv0
|  0xC0000
|  18
|  0x236600
|  0x2F6610
|  0x3E678
|-
|  lv2_kernel.self
|  0xC0000
|  19
|  0x274C78
|  0x334C88
|  0x171B88
|-
|  eurus_fw.bin
|  0xC0000
|  20
|  0x3E6800
|  0x4A6810
|  0x70F94
|-
|  emer_init.self
|  0xC0000
|  21
|  0x457794
|  0x5177A4
|  0x7CDB8
|-
|  hdd_copy.self
|  0xC0000
|  22
|  0x4D454C
|  0x59455C
|  0x60D68
|} ros2 Region TOC  Here is a list of files stored on /dev/rflash1 i found in HV 3.41 and dumped with PSGroove:


0x00299688 (3.15)


0x00295118 (2.60)
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Entry Name
!  TOC Offset
!  Entry TOC Index
!  Entry Relative Offset
!  Entry Absolute Offset
!  Entry Size
|-
|  creserved_0
|  0x7C0000
|  0
|  0x460
|  0x7C0470
|  0x40000
|-
|  sdk_version
|  0x7C0000
|  1
|  0x40460
|  0x800470
|  0x8
|-
|  lv1ldr
|  0x7C0000
2
|  0x40480
|  0x800490
|  0x1E64C
|-
|  lv2ldr
|  0x7C0000
|  3
|  0x5EB00
|  0x81EB10
|  0x16E30
|-
|  isoldr
|  0x7C0000
|  4
|  0x75980
|  0x835990
|  0x12EC4
|-
|  appldr
|  0x7C0000
|  5
|  0x88880
|  0x848890
|  0x1DB64
|-
|  spu_pkg_rvk_verifier.self
|  0x7C0000
|  6
|  0xA63E4
|  0x8663F4
|  0xFACC
|-
|  spu_token_processor.self
|  0x7C0000
|  7
|  0xB5EB0
|  0x875EC0
|  0x5C94
|-
|  spu_utoken_processor.self
|  0x7C0000
|  8
|  0xBBB44
|  0x87BB54
|  0x65D0
|-
|  sc_iso.self
|  0x7C0000
|  9
|  0xC2114
|  0x882124
|  0x1532C
|-
|  aim_spu_module.self
|  0x7C0000
|  10
|  0xD7440
|  0x897450
|  0x4498
|-
|  spp_verifier.self
|  0x7C0000
|  11
|  0xDB8D8
|  0x89B8E8
|  0xD7F0
|-
|  mc_iso_spu_module.self
|  0x7C0000
|  12
|  0xE90C8
|  0x8A90D8
|  0x808C
|-
|  me_iso_spu_module.self
|  0x7C0000
|  13
|  0xF1154
|  0x8B1164
|  0x88B8
|-
|  sv_iso_spu_module.self
|  0x7C0000
|  14
|  0xF9A0C
|  0x8B9A1C
|  0xC078
|-
|  sb_iso_spu_module.self
|  0x7C0000
|  15
|  0x105A84
|  0x8C5A94
|  0x5DB0
|-
|  default.spp
|  0x7C0000
|  16
|  0x10B834
|  0x8CB844
|  0x22A0
|-
|  lv1.self
|  0x7C0000
|  17
|  0x10DB00
|  0x8CDB10
|  0x129040
|-
|  lv0
|  0x7C0000
|  18
|  0x236B80
|  0x9F6B90
|  0x3E570
|-
|  lv2_kernel.self
|  0x7C0000
|  19
|  0x2750F0
|  0xA35100
|  0x1712D0
|-
|  eurus_fw.bin
|  0x7C0000
|  20
|  0x3E63C0
|  0xBA63D0
|  0x70F94
|-
|  emer_init.self
|  0x7C0000
|  21
|  0x457354
|  0xC17364
|  0x7FBB8
|-
|  hdd_copy.self
|  0x7C0000
|  22
|  0x4D6F0C
|  0xC96F1C
|  0x61518
|}


=== Parameters ===
==== Methods ====
*initialize_starship - 0x0028298C (3.15)
*SSOperation - 0x0027BFB0 (3.15)
*SSTransfer - 0x0027BE68 (3.15)
*FLASH_Memory_SS2_on_complete - 0x00278E48 (3.15)
*_FLASH_read_data - 0x0022D89C (3.15)
*_FLASH_write_data - 0x0022D8C8 (3.15)
*FLASH_SS2_HW_Reset - 0x0027BD1C (3.15)


r3 - pointer to Process object
===  HDD device  ===
*device id = 2
*block size = 512


r4 - some address in address space of Process
The HDD device uses ENCDEC device.


r5 - pointer to buffer in HV space
====  vtable  ====
*0x00353F48 (3.15)


r6 - size to copy
====  Member variables  ====
offset 0x1590 - LBA48 capability flag (4 bytes)
*offset 0x17E8 - request table (0x58 * 16 bytes)
*offset 0x1DB8 - request timer active flag (1 byte)


r7 -&nbsp;?
====  Regions  ====


r8 - direction of copy (0 - copy from user space,&nbsp;!= 0 - copy to user space)
{|  class="wikitable FCK&#95;_ShowTableBorders"
! Index
!  Start sector
!  Number of sectors
|-
0
|  0x0
|  0x950F8B0
|-
|  1
|  0x8
|  0x80000
|-
|  2
|  0x80018
|  0x7C8F898
|-
|  3
|  0x7D0F8B8
|  0x3FFFF8
|-
|  4
|  0x810F8B8
|  0x13FFFF8
|-
|  5
|  -
|  -
|-
|  6
|  -
|  -
|-
|  7
|  -
-
|}


r9 -&nbsp;?
====  Supported Device Commands  ====
Here is the list of commands supported by HDD storage device.


== vtable  ==
*The commands can be used with HV call lv1_storage_send_device_command.
*However, before a command is executed HV does bit manipulation with it and checks it against the value of repository node ss.laid or also called LPAR authentication ID. If this test fails then the command is NOT executed.


Processes have no vtables. That means they have no virtual functions.
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Command
!  Description
|-
|  0x2
|  LV1_STORAGE_SEND_ATA_COMMAND
|-
|  0x10
|  -
|-
|  0x1B
|  ATA Set UltraDMA Mode
|-
|  0x1C
|  ATA Set Features PIO Flow Control Transfer Mode
|-
|  0x21
|  -
|-
|  0x22
|  ATA Identify Device
|-
|  0x23
|  LV1_STORAGE_ATA_HDDOUT (ATA Flush Cache Ext)
|-
|  0x26
|  ATA Read Alternative Status
|-
|  0x27
|  ATA Read Error
|-
|  0x28
|  -
|-
|  0x31
|  ATA Flush Cache/ATA Flush Cache Ext
|-
|  0x32
|  ATA Stanby Immediate
|-
|  0x33
|  -
|}


== Member variables ==
=== Virtual FLASH device (VFLASH) ===
device id = 3 (on Linux)/ 4 (on GameOS)


offset 0x0 - PID (4 bytes)
block size = 512


offset 0x8 - pointer to parent Process object
*It's a psuedo device.
*This storage device redirects all requests to the region 1 of HDD storage device&nbsp;&#33;&#33;&#33;====  vtable  ====
*0x00353D88 (3.15)


offset 0x10 - pointer to AddressSpace object
====  Member variables  ====
offset 0xD60 - pointer to a storage device that all requests are redirected to
*offset 0xD68 - region ID of the storage device that all requests are redirected to


offset 0x30 - pointer to first PThread object of process
====  Regions  ====


offset 0x38 - array of signal handlers (192 * 8 bytes)
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Index
!  Start sector
!  Number of sectors
|-
|  0
|  0x0
|  0x80000
|-
|  1
|  0x8
|  0x75F8
|-
|  2
|  0x7800
|  0x63E00
|-  
|  3
|  0x6B600
|  0x8000
|-
|  4
|  0x73600
|  0x400
|-
|  5
|  0x73A00
|  0x2000
|-
|  6
|  0x77C00
|  0x200
|-
|  7
|  -
|  -
|}


offset 0x638 - pointer to pointer to ELF image
====  /dev/rflash1_1x and /dev/rflash_1xp  ====
*These LPAR 1 devices access region 5 of UNKNOWN storage device.
*In region 5 of UNKNOWN storage device is e.g. LINUX image stored.
====  GameOS's dev_flash ====
*dev_flash has FAT16 file system.
*Accesses to GameOS's dev_flash are routed to UNKNOWN storage device region 2*To decrypt sectors read from this region use as flags 0x4&nbsp;&#33;&#33;&#33; Without using flags 0x4 the sectors will be encrypted.
*The sectors are decrypted not by GameOS but by ENCDEC device.
Here is a snippet from raw dev_flash dump made with HV call lv1_storage_read (flags 0x4) from GameOS:


offset 0x640 - start of file table (20 * 24 bytes)


offset 0x820 - exit status (4 bytes)  
Offset      0  1  2  3  4 5  6  7  8  9  A  B  C  D  E  F
00000000  E9 00 00 20 20 20 20 20  20 20 20 00 02 10 10 00  é..        .....
00000010  02 00 02 00 00 F8 70 00  00 00 00 00 00 00 00 00  .....øp.........
00000020  00 3E 06 00 00 00 29 00  00 00 00 4E 4F 20 4E 41  .&gt;....)....NO NA
00000030  4D 45 20 20 20 20 46 41  54 31 36 20 20 20 00 00  ME    FAT16  ..
00000040  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000050  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000060  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000070  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000080  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000090  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000000A0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000000B0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000000C0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000000D0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000000E0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000000F0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000100  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000110  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000120  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000130  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000140  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000150  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000160  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000170  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000180  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000190  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000001A0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000001B0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000001C0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000001D0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000001E0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000001F0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 55 AA  ..............Uª


offset 0x898 - pointer to Inode object of current directory
====  Methods ====
initialize_virtual_flash - 0x00282954 (3.15)


offset 0x8A8 - some pointer
===  Enqueueing and Scheduling of Storage Requests ===
*HV uses a simple FIFO scheduling algorithm for Storage Requests and a request timeout.
*Each storage device has a table of size 16 to store incomming and pending Storage Requests
*ENCDEC storage device has a table of size 32 to store incomming and pending Storage Requests
*When a new Storage Request is submitted e.g. by HV call lv1_storage_read or lv1_storage_write, the table is scanned for a free slot, if there are no pending Storage Requests then the Storage Request is executed immediately
*When a Storage Request is completed, the finished Storage Reuqest is passed to function storage_device_async_request_complete and the table of Storage Requests is scanned again for the next pending Storage Request which will be executed
* There are 2 types of Storage Requests: Read/Write (1) and Device Command (2).
* Read and Write Storage Requests use the same HV function of a Storage Device to enqueue the request. Before Write Storage Request is inserted into the Request Table of a Storage Device, the flags parameter passed e.g. in lv1_storage_read or lv1_storage_write is ored with 0x8. That is how HV differentiates between Read and Write Storage Requests.
====  Storage Device Request Table ====
*Each request slot is of size 0x58=====  Request Slot =====
offset 0x0 - state: 1 - free, 2 -&nbsp;? (4 bytes)
*offset 0x4 - type: 1 - Read/Write, 2 - Command, 0x86 - ENCDEC command (4 bytes)
*offset 0x10 - request tag (8 bytes)
*offset 0x20 - start sector (8 bytes)
*offset 0x28 - sector count (4 bytes)


=== Signals ===
=====  ENCDEC Storage Device =====
*Request Table begins at offset 0xDC0 of ENCDEC storage device.
=====  RBD Storage Device =====
*Request Table begins at offset 0x1808 of RBD storage device.
=====  FLASH Storage Device =====
*Request Table begins at offset 0x18F0 of FLASH storage device.
===== HDD Storage Device =====
*Request Table begins at offset 0x17E8 of HDD storage device.
====  Methods ====
storage_device_HDD_enqueue_request - 0x0026E21C (3.15)


A process can have upto 192 signal handlers. For example, signal 9 is SIGKILL. A signal handler for SIGKILL cannot be installed and it cannot be ignored.  
storage_device_HDD_do_device_command - 0x0026CED0 (3.15)


A process does not have a signal mask. Every thread of a process has it's own signal mask.  
storage_device_HDD_do_request - 0x0026DED8 (3.15)


==== Signal constants  ====
storage_device_HDD_request_complete - 0x0026E57C (3.15)


0x9 - SIGKILL
storage_device_FLASH_enqueue_request - 0x0027A518 (3.15)


0xE - SIGALRM
storage_device_FLASH_do_request - 0x00278D1C (3.15)


0x20 - SIGSPUMB
storage_device_FLASH_do_device_command - 0x00279250 (3.15)


0x21 - SIGSPUMB_SL
FLASH_Memory_SS2_on_complete - 0x00278E48 (3.15)


0x22 - SIGSPUSTOP
storage_device_async_request_complete - 0x00255184 (3.15)


0x23 - SIGSPUSTOP_SL
storage_device_TransLparAddrToPhysAddr - 0x002533B4 (3.15)


0x24 - SIGSPUDMA
storage_device_add_async_request_locked - 0x002527B8 (3.15)


0x26 - SIGSPUTIMEOUT
storage_device_RBD_enqueue_request - 0x002723F0 (3.15)


0x27 - SIGSPUERR
storage_device_RBD_do_request - 0x0025EF70 (3.15)


0x41 - SIGSHUTDOWN
storage_device_RBD_do_next_request - 0x00270994 (3.15)


=== File table  ===
storage_device_RBD_request_complete - 0x00271FD4 (3.15)


The file table has 20 entries. So, a process can have at most 20 files opened simultaneously. Each entry is 24 bytes large.  
storage_device_rbd_do_request - 0x0025EE94 (3.41)
 
storage_device_rbd_do_device_command - 0x0027061C (3.41)


offset 0x0 - entry valid or invalid (1 byte), 0 - invalid, 1 - valid
===  Encryption and Decryption of Storage Devices ===
====  HDD ====
*ENCDEC peripheral device is used for HDD encryption/decryption
*Write request is first passed to ENCDEC device for encryption. When ENCDEC device is done, it calls a callback and passes the encrypted data to the callback. The callback writes the encrypted data with ATA WriteDMAExt command to HDD.
*When a storage device request is processed by HV, Storage Subsystem checks if cryptography is enabled for the storage device.
*HV checks 1 byte of data owned by the storage device and when the value of this flag is not 0 then it uses encryption/decryption.
*By setting this flag to 0 at runtime, encryption/decryption of storage devices can be disabled at runtime.
*We could patch lv1.self so that encryption/decryption of storage devices is disabled permanently.
*HDD sectors can be both decrypted and encrypted with HV calls
=====  UFS2 =====
*Superblock starts at sector 0x80.
*At the end of the superblock structure you will find UFS2 signature 0x19540119.
Here is the decrypted superblock of UFS2 filesystem:


offset 0x8 - pointer to object with File interface


offset 0x10 - current file position (8 bytes)
Offset      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
00010000  00 00 00 00 00 00 00 00  00 00 00 28 00 00 00 30  ...........(...0
00010010  00 00 00 38 00 00 0B B8  00 00 00 00 00 00 00 00  ...8...¸........
00010020  00 00 00 00 00 00 00 00  00 00 78 10 00 00 01 5C  ..........x....
00010030  00 00 40 00 00 00 08 00  00 00 00 08 00 00 00 08  ..@.............
00010040  00 00 00 00 00 00 00 00  FF FF C0 00 FF FF F8 00  ........ÿÿÀ.ÿÿø.
00010050  00 00 00 0E 00 00 00 0B  00 00 00 08 00 00 08 00  ................
00010060  00 00 00 03 00 00 00 02  00 00 08 00 00 00 00 00  ................
00010070  00 00 00 00 00 00 08 00  00 00 00 40 00 00 00 00  ...........@....
00010080  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010090  00 00 00 00 F5 35 BD 07  00 00 00 00 00 00 18 00  ....õ5½.........
000100A0  00 00 40 00 00 00 00 00  00 00 00 00 00 00 00 00  ..@.............
000100B0  00 00 00 00 00 00 00 00  00 00 5C 00 00 01 6F 70  .............op
000100C0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000100D0  00 00 00 80 2F 63 65 6C  6C 5F 6D 77 5F 63 66 73  ...€/cell_mw_cfs
000100E0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000100F0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010100  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010110  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010120  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010130  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010140  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010150  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010160  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010170  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010180  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010190  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000101A0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000101B0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000101C0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000101D0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000101E0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000101F0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010200  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010210  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010220  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010230  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010240  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010250  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010260  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010270  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010280  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010290  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000102A0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000102B0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000102C0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000102D0  00 00 00 00 00 00 00 7C  00 00 00 00 00 00 00 00  .......&#124;........
000102E0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000102F0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010300  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010310  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010320  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010330  00 00 00 00 00 00 00 00  80 00 00 00 00 55 FD 70  ........€....Uýp
00010340  80 00 00 00 00 55 E0 00  80 00 00 00 00 55 F8 00  €....Uà.€....Uø.
00010350  00 00 00 00 00 00 00 00  00 00 00 00 00 00 40 00  ..............@.
00010360  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010370  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010380  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010390  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000103A0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000103B0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000103C0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000103D0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000103E0  00 00 00 00 00 00 00 00  00 00 00 00 00 01 00 00  ................
000103F0  00 00 00 00 00 00 00 3C  00 00 00 00 00 3B D3 23  .......&lt;.....;Ó#
00010400  00 00 00 00 00 7D 0F 82  00 00 00 00 00 00 00 9F  .....}.‚.......Ÿ
00010410  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010420  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010430  00 00 00 00 49 B0 5E 3B  00 00 00 00 01 F2 3E 26  ....I°^;.....ò&gt;&amp;
00010440  00 00 00 00 01 E2 86 3B  00 00 00 00 00 00 0B B8  .....â†;.......¸
00010450  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010460  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010470  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010480  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010490  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000104A0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 40 00  ..............@.
000104B0  00 00 00 40 00 00 00 00  00 00 00 00 00 00 00 00  ...@............
000104C0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000104D0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000104E0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000104F0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010500  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010510  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010520  00 00 00 03 00 00 00 08  00 00 00 78 00 00 00 00  ...........x....
00010530  00 00 80 10 02 02 FF FF  00 00 00 00 00 00 3F FF  ..€...ÿÿ......?ÿ
00010540  00 00 00 00 00 00 07 FF  00 00 00 00 00 00 00 00  .......ÿ........
00010550  00 00 00 00 00 00 00 00  00 00 00 00 19 54 01 19  .............T..


== Process_EA_to_RA ==
==== FLASH ====


This function translates an effective process address to real address.
====  RBD ====
===  SATA/ATA/ATAPI ===


0x00297E08 (3.15)  
====  ATA Interrupt Handler  ====
*0x0026B984 (3.15)  


== Objects ==
==== ATA_SetDMA  ====
*0x00268ADC (3.15)


Here are the addresses of Process objects i could identify in HV dump 3.15:
====  ATA_make_PRD_table  ====
*0x00267DB4 (3.15)


*0x006BB0D0 (PID 0)  
This function initializes a PRD (Physical Region Descriptor) table.  
*0x0012C010 (PID 3) - ss_server3.fself
*0x000915D0 (PID 5) - ss_server2.fself
*0x000E4D70 (PID 6) - ss_server1.fself
*0x0012C8D0 (PID 9) - sysmgr_ss.fself


Here are the addresses of Process objects i could identify in HV dump 2.60:
====  ClearPATACInterrupt  ====
*0x00267CAC (3.15)


*0x006B7580 (PID 0)
====  EnablePATACInterrupt  ====
*0x00135F90 (PID 3)
*0x00267D44 (3.15)  
*0x000862D0 (PID 5)
*0x000A9870 (PID 6)
*0x00084B80 (PID 9)


In JIG 2.43:
====  DisablePATACInterrupt  ====
*(PID3) <- ss_server3
*0x00267AF0 (3.15)  
*(PID4) <- ss_sc_init_pu
*(PID5) <- ss_server2
*(PID6) <- ss_server1
*(PID7) <- factory_data_mngr_server
*(PID8) <- updater_frontend


(see [http://pastie.org/pastes/9407461/text?key=f6bk5lof0g4bgeu6xrn5ua this])
====  ATA_read_AltStatus_reg  ====
*0x00267C40 (3.15)  


= PThread  =
This function reads the ATA Alternate Status Register and returns it's value.


All PThread objects of the same Process object are linked together in a list.  
====  ATA_write_DATA_reg  ====
*0x00268A10 (3.15)


== vtable  ==
This function writes a 16-bit value to the ATA Data Register.


0x003556D8 (3.15)  
====  ATA_read_DATA_reg  ====
*0x0026887C (3.15)  


0x0034ECC0 (2.60)  
====  ATA_write_DATA  ====
*0x0026635C (3.15)  


offset 0x60 - pointer to TOC entry of system call handler
This function writes several 16-bit values to the ATA Data register.


== Member variables ==
==== ATA_write_CMD_reg  ====
*0x002688A0 (3.15)


offset 0x10 - pointer to next PThread object of Process
====  ATA_read_Error_reg  ====
*0x00267BD4 (3.15)


offset 0x18 - Thread object
====  ATA_write_Features_reg  ====
*0x002689F0 (3.15)


offset 0x2B8 -&nbsp;? (4 bytes)  
====  ATA_write_DevCtrl_reg  ====
*0x00267BB4 (3.15)  


offset 0x2C0 - pointer to TOC of some function
====  ATA_write_TaskFile_regs  ====
*0x00266BC8 (3.15) 0x002665A0 (3.15)


offset 0x2C8 - pointer to TOC of some function
====  ATA_send_ATAPI_cmd  ====
*0x002655F4 (3.15)


offset 0x348 - some conter (4 bytes)  
====  ATA_send_cmd  ====
*0x0026580C (3.15)  


offset 0x3C0 - pointer to Process object that owns PThread object
====  ATA_send_ReadSectors_cmd  ====
This function uses LBA28.


offset 0x3F8 - signal pending mask (3 * 8 bytes = 192 signals)  
*0x0025D2B4 (3.15)  


offset 0x440 - ConditionVariable object
====  ATA_send_WriteSectors_cmd  ====
This function uses LBA28.


== Signals  ==
*0x0025CEF4 (3.15)


A PThread has it's own signal mask, independant of all other PThreads in the same process.  
====  ATA_send_ReadDMA_cmd  ====
This function uses LBA28.  


== Methods  ==
*0x0025D380 (3.15)


wait_for_my_turn(Pthread ptr,&nbsp;?, sleep interruptible flag) = wakeup status - 0x00296FB0 (3.15)
====  ATA_send_WriteDMA_cmd  ====
This function uses LBA28.  


= Thread  =
*0x0025CFB8 (3.15)


== get_current_thread ==
==== ATA_send_ReadDMAExt_cmd  ====
This function uses LBA48.


This function returns the pointer to current running thread.  
*0x0025D74C (3.15)


0x0028B994 (3.15)
====  ATA_send_WriteDMAExt_cmd  ====
This function uses LBA48.  


0x0028744C (2.60)  
*0x0025D664 (3.15)  


== vtable ==
==== ATA_send_IdentifyDevice_cmd  ====
*0x0025D4D8 (3.15)


0x00355750 (3.15)  
====  ATA_send_IdentifyPacketDevice_cmd  ====
*0x0025D448 (3.15)  


== Member variables ==
==== ATA_send_FlushCache_cmd  ====
*0x0025D5E8 (3.15)


offset 0x288 - some pointer
====  ATA_send_FlushCacheExt_cmd  ====
*0x0025D568 (3.15)


offset 0x290 - some pointer
====  ATA_send_StandbyImmediate_cmd  ====
*0x0025D07C (3.15)


= AddressSpace =
==== ATA_send_SetFeatures_cmd  ====
*0x0025D208 (3.15)


== vtable ==
==== ATA_send_SMARTEnable_cmd  ====
*0x0025D0F8 (3.15)


0x003549A0 (3.15)  
====  ATA_send_SMARTSaveAttributeValue_cmd  ====
*0x0025D180 (3.15)  


0x0034DF88 (2.60)  
====  ATA_SetUDMAMode  ====
*0x00260EE8 (3.15)  


== Member variables ==
===== Parameters  =====
r5 - UltraDMA mode (0-5)


offset 0x8 - Mutex object
===  Booting a Bootloader from VFLASH ===
Coming soon&nbsp;&#33;&#33;&#33;


offset 0x40 - AddressProtectionDomain object
==  High precision timers  ==
These timers are used e.g. in SATA/ATA/ATAPI driver.


offset 0x50 - some pointer
===  timer_add  ===
*0x002C3F2C (3.15)


offset 0xC0 - some counter (4 bytes)  
===  timer_del  ===
*0x002C41AC (3.15)  


== AddressSpace_EA_to_RA ==
=== timer_run_expired  ===
This function is called from HDEC interrupt handler.


0x002874D0 (3.15)  
*0x002C4020 (3.15)  


= AddressProtectionDomain =
=== timer_set_HDEC  ===
*0x002BCF80 (3.15)


== vtable ==
== SPE ==
There are 3 SPE classes.


0x00354980 (3.15)
The HV call lv1_construct_logical_spe can create LogicalSPE, SPEType1 and SPEType2 objects.  


== Member variables  ==
The syscall 0x10040 creates only SPEType1 objects.


offset 0x0 - pointer to previous AddressProtectionDomain object
The SPEType1 and SPEType2 objects cannot be created when isolation mode is disabled. The right most bit of repository node sys.lv1.iso_enbl is checked and when it's not 1 then the SPEType1 and SPEType2 objects cannot be created. In LPAR 1, this check succeedes always. Only in LPARs different from 1, the repository node sys.lv1.iso_enbl is checked.


offset 0x8 - pointer to next AddressProtectionDomain object
===  LogicalSPE  ===
SPE type = 0


offset 0x10 - poiinter to pointer to SLB entries
Objects of this class are used e.g. on Linux.


offset 0x18 - pointer to AddressSpace object that owns this object
====  vtable  ====
*0x00358360 (3.15)
*offset 0x20 - pointer to TOC entry of interrupt handler for SPE


offset 0x2A - pointer to previous ProtectionPage
====  Member variables  ====
*offset 0x38 - pointer to LPAR obj that owns this SPE obj
*offset 0x78 - table of pointers to Outlet objects (3 * 8 bytes, one for each Class 0-2)
*offset 0xB0 - pointer to VAS object
*offset 0xC8 - pointer to Logical PPE object
*offset 0xE0 - SPE id
*offset 0x1A0 - pointer to MMIO Memory Region object
*offset 0x1A8 - pointer to Shadow Registers Memory Region object


offset 0x34 - pointer to next ProtectionPage
====  Objects  ====
Here is the list of logical SPE objects i found in HV 3.15:


offset 0x40 - Mutex object
*0x003A82E0 - SPE id 0
*0x003A8660 - SPE id 1
*0x003ABA00 - SPE id 2
*0x003B4010 - SPE id 3
*0x003B4D60 - SPE id 4
*0x003B5970 - SPE id 5


= ProtectionPage =
===  SPEType1 ===
SPE type = 1


== vtable  ==
====  vtable  ====
*0x00359750


none
====  Member Variables  ====
*offset 0x198 - pointer to MMIO Memory Region object
*offset 0x1A0 - pointer to Shadow Registers Memory Region object


== Member variables ==
===  SPEType2 ===
SPE type = 2


offset 0x0 - RA (8 bytes)
====  vtable  ====
*0x00359790


offset 0x8 - EA (4 bytes)  
===  SPE Register Shadow Area  ===
*HV createas a SPE Register Shadow Area for each contstructed SPE.
*The area is 1 4Kb page of physical memory.
*When SPE state changes then HV updates data in this area.
*The value of shadow_addr that is returned by lv1_construct_logical_spe is a LPAR start address of this area and it cannot be accessed until it's mapped in the HTAB.
*The SPE Register Shadow Area may be mapped only with read-only page protection or else HV call lv1_insert_htab_entry fails. I tested it with PSGroove and could map the whole memory range and read it after i constructed SPE of type 1 with lv1_construct_logical_spe.
*The shadow_addr is also returned by syscall_10040 (that creates SPE of type 1) but it returns already mapped Process address so HV Processes do not have to map it in HTAB.
*When an isoated SPU is done, HV Processes checks the value at offset 0x30 to determine if the SPU execution was successfull or not.
*GameOS checks also the value at offset 0x30 in the SPE Shadow Area.
*When GameOS creates SPE of type 1 then it maps only SPE Register Shadow Area into it's address space.


offset 0x10 - pointer to previous ProtectionPage (4 bytes)  
====  SPE Register Shadow Area Offsets  ====
*0x30 - SPU_Status register value (4 bytes)  
*0xF10 -&nbsp;?
*0xF18 -&nbsp;?


offset 0x14 - pointer to next ProtectionPage (4 bytes)
=====  Stop Code  =====
*The high-order 16 bit of SPU_Status register value is a Stop Code.
Here is the list of Stop Codes i extracted from HV Processes which read the value at offset 0x30 when SPU is done:


= Mutex  =


== vtable ==
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Value
!  Description
|-
|  0xA
|  Success
|-
|  0xC
|  Access Violation (LPAR auth id error)
|-
|  0xE
|  &nbsp;?
|-
|  0xF
|  Revoked
|-
|  0x12
|  Invalid Parameter
|-
|  0x13
|  &nbsp;?
|-
|  0x17
|  Invalid Parameter
|-
|  0x25
| &nbsp;?
|}


0x00354D08 (3.15)  
===  SPU_send_MFC_cmd  ===
*0x002B09B0 (3.15)  


0x0034E2F0 (2.60)
This function programs a MFC.  


== Member variables ==
=== SPU_write_MFC_cmd_status_reg  ===
*0x002AEE70 (3.15)


offset 0x18 -&nbsp;? (4 bytes)  
===  SPU_write_Sig_Notify1_reg  ===
*0x002AEF4C (3.15)  


offset 0x1C -&nbsp;? (4 bytes)  
===  SPU_write_Sig_Notify2_reg  ===
*0x002AEF30 (3.15)  


= ConditionVariable =
=== SPU_write_Sig_Notify1_and_Notify2  ===
*0x002B0A78 (3.15)


== vtable ==
=== SPU_enable_iso_load_request  ===
*0x002AEDE0 (3.15)


0x003549C0 (3.15)  
===  SPU_iso_load_request  ===
*0x002AEED0 (3.15)  


offset 0x20 - wait
===  SPU_enable_runcntl  ===
*0x002AEB24 (3.15)


== Member variables ==
=== SPU_stop_request  ===
*0x002AEEF0 (3.15)


offset 0x20 - pointer to Mutex object
===  SPU_run_request  ===
*0x002AEF10 (3.15)


= File interface =
=== SPU_read_status_reg  ===
*0x002AE978 (3.15)


== vtable ==
=== SPU_read_Mbox_Stat_reg  ===
*0x002AE998 (3.15)


offset 0x8 -&nbsp;?
===  lv1_undocumented_function_62  ===
Updates SLB entry.


offset 0x28 - open
====  Parameters  ====
* %r3 - SPE id
* %r4 -&nbsp;? (valid values: 0 - 3)
* %r5 - SLB entry index (valid values: 0 - 7)
* %r6 - ESID
* %r7 - VSID


offset 0x30 - close
===  spe_type1_interrupt_handler  ===
*0x0030E238 (3.15)


offset 0x38 - read
===  spe_type2_interrupt_handler  ===
*0x003103F8 (3.15)


offset 0x40 - write
===  spe_type3_interrupt_handler  ===
*0x002F36F4 (3.15)


offset 0x50 - mmap
===  Isolation  ===
====  Loaders Table  ====
*All the binary files needed for isolation and decryption are already stored in HV memory&nbsp;&#33;&#33;&#33;*They are probably loaded during HV initialization from FLASH.
*The table has 9 entries.
*Each entry is 16 bytes large.
0x00010100 (3.15)


offset 0x58 - ioctl
Loaders Table Entry  offset 0x0 - pointer to data in memory
*offset 0x8 - size of data


= StorageRegionFile  =
Here are the contents of the Loaders Table from HV 3.15:


Flash device file class.


== vtable ==
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Index
!  Name
!  Address of Data in HV Dump
!  Size of Data
|-
|  0
|  -
|  0x0C150000
|  0x1E5CC
|-
|  1
|  metldr
|  0x00011000
|  0xE8D0
|-
|  2
|  lv2ldr
|  0x00020000
|  0x16DA0
|-
|  3
|  isoldr
|  0x00055000
|  0x12E44
|-
|  4
|  appldr
|  0x00037000
|  0x1DAE4
|-
|  5
|  EID0
|  0x00068000
|  0x860
|-
|  6
|  -
|  0x00069010
|  0x8
|-
|  7
|  -
|  0x00069020
|  0x50
|-
|  8
|  -
|  0x00069070
| 0x8
|}


0x003569F8 (3.15)  
=====  Methods  =====
get_iso_loaders_tab - 0x002B0B70 (3.15)
iso_loaders_tab_get_entry - 0x002B0CB8 (3.15)  


= VUARTFile =
==== metldr  ====
=====  Loading metldr  =====
*Physical/Virtual memory address of an isolation module that should be loaded by metldr is written into SPU register SPU_In_Mbox. The SPU register SPU_In_Mbox is 32bit, so 64bit memory address is written in 2 steps.
*MFC relocation is turned off by clearing R-bit in SPU register MFC_SR1. By doing this, HV enables real address mode for MFC of SPU.
*On GameOS, it also works with relocation on. You just have to initialize SLB of SPU and insert valid SLB entries.
*Physical/Virtual memory address of metldr is written to SPU registers Sig_Notify1 and Sig_Notify2*Isolation load request is enabled by writing SPU register SPU_PrivCntl*Isolation load request is made by writing value 0x3 into SPU register SPU_RunCntl


VUART device file class.  
=====  Methods  =====
SPE_load_request_metldr - 0x002B00A4 (3.15)


== vtable ==
==== lv2ldr  ====
*lv2ldr is used to decrypt lv2_kernel.self*syscalls 0x10042 and 0x1004A use lv2ldr*syscall 0x10042 is used by HV Process 3 during LV2 LPAR construction
*syscall 0x1004A uses different parameters as syscall 0x10042


0x00356458 (3.15)  
=====  Methods  =====
*SPE_load_request_lv2ldr_1 - 0x002AE82C (3.15)
*SPE_load_request_lv2ldr_2 - 0x002AE8D8 (3.15)  


= STDLCFile =
=====  Loading lv2ldr  =====
*64 bit memory address of lv2ldr is written into 32 bit SPU register SPU_In_Mbox*metldr is loaded
==== isoldr  ====
*isoldr is used for executing isolated SPUs
*syscall 0x10043 and HV call lv1_undocumented_function_209 use isoldr to execute isolated SPUs
*EID0 data is transferred to Local Storage Address 0x3E400 by MFC
*Revoke List For Program is transferred to Local Storage Address 0x3F000 by MFC
=====  Revoke List For Programs  =====
*0x00361980 (3.15)


Console device file class.
=====  Methods  =====
SPE_load_request_isoldr - 0x002B0394


== vtable ==
=====  Loading isoldr =====
*64 bit memory address of isoldr is written into 32 bit SPU register SPU_In_Mbox*metldr is loaded
====  appldr  ====
*appldr is used for decryption of SELFs
*HV call lv1_authenticate_program_segment loads appldr=====  Methods  =====
SPE_load_request_appldr - 0x002AE900


0x003561F8 (3.15)
=====  Loading appldr  =====
*64 bit memory address of isoldr is written into 32 bit SPU register SPU_In_Mbox*metldr is loaded


== Member variables ==
===== Decrypting SELFs with appldr and lv1_authenticate_program_segment  =====
*lv1_authenticate_program_segment loads and prepares appldr for SELF decryption.
*When appldr is ready to decrypt data, it sends a message via mailbox.
*The address and the size of the encrypted data is passed to appldr via a shared memory.


offset 0x20 - reference counter (8 bytes)
==  Socket  ==
The socket supports only one address family 0x1F, one socket type 0 and one protocol 0.


offset 0x28 - free buffer space&nbsp;? (8 bytes)
===  Socket address  ===
Socket address is called port ID. Valid port IDs are 0-63. Port ID 0 is reserved.


= SocketFile =
=== Socket state  ===
2 - LISTEN


== vtable ==
=== Socket table  ===
The socket table contains 64 entries, one for each port ID. Each entry is 16 bytes large.


0x00355DB0 (3.15)  
The socket table is at 0x0035F6E8 (3.15).


offset 0xB0 - bind
Here is the list of opened sockets i found in HV 3.15:


= RegionManager =
*0x00091FE0 (port ID 0x23, accepts connections)
*0x00127850 (port ID 0x24, accepts connections)
*0x0012F810 (port ID 0x25, accepts connections)
====  Socket table entry ====
offset 0x0 - pointer to Socket obj
*offset 0x8 - socket accepts connections or not (0 - does not accept, 1 - accepts, 1 byte)
 
===  vtable  ===
*0x00355DB0 (3.15)
*offset 0xB0 - bind
*offset 0xB8 - listen
*offset 0xC8 - connect


== vtable ==
=== Member variables  ===
offset 0x360 - socket state (4 bytes)
*offset 0x368 - port ID (8 bytes)
*offset 0x370 - max backlog queue size (8 bytes)


0x00355F80 (3.15)  
==  Virtual Address Space  ==
===  VAS  ===
====  vtable  ====
*0x00357958 (3.15)  


= Inode =
==== Member variables  ====
*offset 0x18 - pointer to LPAR that owns this VAS object
*offset 0x48 - VAS id (8 bytes)
*offset 0x70 - number of page sizes (4 bytes)
*offset 0x74 - log2 of HTAB size
*offset 0x78 - pointer to HTAB object


== DirectoryInode ==
==== Objects  ====
Here is the list of the VAS objects i found in HV dump 3.15:


=== vtable ===
*0x001C8050 (VAS id 2, LPAR 1)
*0x003B4910 (VAS id 3, LPAR 2)
*0x003BDB50 (VAS id 48, LPAR 2)
=== HTAB ===
*0x38(-0x69A8(HSPRG0)) - pointer to the currently active HTAB in LPAR


0x00355788 (3.15)  
====  vtable  ====
*0x003575B0 (3.15)  


offset 0x20 - link
====  Member variables  ====
*offset 0x48 - pointer to first PTE
*offset 0x60 - LPID (4 bytes)
*offset 0x64 - log2 of HTAB size (4 bytes)


offset 0x28 - unlink
====  Objects  ====
Here is the list of the HTAB objects i found in HV dump 3.15:


== get_root_inode ==
*0x001C8270 (VAS id 2, LPAR 1)
*0x00180000 - HTAB PTEs (HTAB size 256 kB)
*0x003A8050 (VAS id 3, LPAR 2)
*0x00500000 - HTAB PTEs (HTAB size 1 MB)
*0x003BC510 (VAS id 48, LPAR 2)
*0x00800000 - HTAB PTEs (HTAB size 1 MB)
====  LPAR_change_HTAB  ====
This function changes currently active HTAB. It writes to SDR1 register where HTAB address and size is stored.


This function returns the pointer to the Inode object of the root directory.  
*0x002BE5D4 (3.15)


0x0029C124 (3.15)
====  Process SLB  ====
Each HV process has 16 SLB entries.  


0x00297BB4 (2.60)
Each SLB entry is 16 bytes large and is in format expected by opcode slbmte.  


== vtable  ==
Most of the entries are zero (invalid).


0x00334E50 (3.15)
Each process has 4 valid SLB entries: code, data, heap and stack.  


offset 0x30 - lookup
=====  Process 3  =====
SLB entries  0x0012D1F0 (3.15)


= File system  =


== Console device file objects ==
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Name
!  ESID
!  VSID
|-
|  code
|  0x8
|  0x38
|-
|  data
|  0xC
|  0x3C
|-
|  heap
|  0xA
|  0x3A
|-
|  stack
|  0xF
| 0x3F
|}


Here is the list of console device file objects i found in HV dump 3.15:
=====  Process 5  =====
SLB entries  0x00093120 (3.15)


*console
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Name
!  ESID
!  VSID
|-
|  code
|  0x8
|  0x48
|-
|  data
|  0xC
|  0x4C
|-
|  heap
|  0xA
|  0x4A
|-
|  stack
|  0xF
|  0x4F
|}


=== vtable ===
=====  Process 6 =====
SLB entries  0x000E6960 (3.15)


0x003561F8 (3.15)
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Name
!  ESID
!  VSID
|-
|  code
|  0x8
|  0x58
|-
|  data
|  0xC
|  0x5C
|-
|  heap
|  0xA
|  0x5A
|-
|  stack
|  0xF
|  0x5F
|}


== Flash device file objects ==
=====  Process 9 =====
SLB entries  0x00763E20 (3.15)


Here is the list of flash device file objects i found in HV dump 3.15:
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Name
!  ESID
!  VSID
|-
|  code
|  0x8
|  0x8
|-
|  data
|  0xC
|  0xC
|-
|  heap
|  0xA
|  0xA
|-
|  stack
|  0xF
|  0xF
|}


*/dev/eflash0
==  VUART  ==
*/dev/eflash1
VUART is a bi-directional communication link. A VUART object has a peer VUART object.
*/dev/rflash0
*/dev/rflash1
*/dev/rflash_1x
*/dev/rflash_1xp


=== vtable  ===
Data written to a VUART object is stored NOT in the data buffer of the VUART object but in the data buffer of the peer VUART object.


0x003569F8 (3.15)
===  VUART table  ===
Every LPAR has a VUART table. A VUART table has 256 entries. Each entry is a pointer to a VUART object that implements VUART interface.  


== IOIF device file objects  ==
*0x00677218 (3.15) - address of VUART table of LPAR 1


Here is the list of IOIF device file objects i found in HV dump 3.15:  
Here is the list of all VUART objects in LPAR 1 i found in HV 3.15:  


*/dev/ioif0
*0x006ABD90 - VUART 0
*0x006ABEB0 - VUART 1
*0x006A3CB0 - VUART 2
*0x006A3DD0 - VUART 3
*0x000A3410 - VUART 5
*0x000A3250 - VUART 6
VUART [0-3] are used by /dev/sc[0-3] respectively.


=== vtable  ===
VUART [0-3] are linked to VUART objects of different type i could not yet identify. These unknown VUART objects use eieio opcode a lot. So i think, they communicate with hardware peripheral.


0x00356688 (3.15)
A write/read to/from /dev/sc[0-3] is a write/read to/from VUART.  


=== Member variables  ===


0x360 = MMIO base address  
*0x00762AA8 (3.15) - address of VUART table of LPAR 2


== SD detector device file objects ==
Here is the list of all VUART objects in LPAR 2 i found in HV 3.15:


Here is the list of SD detector device file objects i found in HV dump 3.15:
*0x00126660 - VUART 0
*0x000A3010 - VUART 2
VUART 0 and VUART 2 of LPAR 2 are created by Process 9 during LPAR construction.  


*/dev/sd_detector
===  VUART class  ===
====  Member variables  ====
offset 0x48 - pointer to peer VUART object
*offset 0x58 - write pointer into data ring buffer
*offset 0x60 - read pointer into data ring buffer
*offset 0x68 - pointer to data ring buffer
*offset 0x70 - size of data ring buffer (8 bytes)
*offset 0x78 - size of data stored in data ring buffer currently (8 bytes)
*offset 0x88 - tx trigger (8 bytes)
*offset 0x90 - rx trigger (8 bytes)
*offset 0x98 - interrupt mask (8 bytes)
*offset 0xA8 - port number (4 bytes)


=== vtable ===
=== Methods ===
*pmpi_read_virtual_uart(port, buf, size, nread) - 0x002EB30C (3.15)
*pmpi_write_virtual_uart(port, buf, size, nwritten) - 0x002EB0EC (3.15)
*VUART_read(pointer to VUART object, buf, size, nread) - 0x002E8654 (3.15)
*VUART_write(pointer to VUART object, buf, size, nwritten) - 0x002E8428 (3.15)


0x00356B48 (3.15)
===  Guest OS VUART 0 (AV Manager)  ===
All data sent to VUART 0 in LPAR 2 is written into the data buffer of VUART 5 of LPAR 1.  


== NET device file objects  ==
VUART 5 of LPAR 1 is accessed by Process 9 in LPAR 1 through the file /proc/partitions/2/vuart/0.


Here is the list of NET device file objects i found in HV dump 3.15:
*Process 9 of LPAR 1 uses RSX syscalls to access RSX driver and memory mapped device access (/dev/ioif0).


*/dev/net0
===  Guest OS VUART 2 (System Manager)  ===
All data sent to VUART 2 in LPAR 2 is written into the data buffer of VUART 6 of LPAR 1.


=== vtable  ===
VUART 6 of LPAR 1 is accessed by Process 9 in LPAR 1 through the file /proc/partitions/2/vuart/2.


0x00356DE8 (3.15)
*System manager supports 62 (0-61) service ids.
*Process 9 has a SID table. SID table has 62 entries.
*Each entry is a pointer to a function responsible for processing SID packets.


== INODES ==
== A/V Manager ==
*A/V Manager is running in Process 9 of HV.
*It communicates with Guest OS through /proc/partitions/0/vuart/0 file.
*GameOS accesses A/V Manager through syscalls 367 - 370.
*PS2 Soft EMU accesses A/V Manager also.


'''INODE OBJECT'''
==  System Manager (SM)  ==
*System Manager (SM) is running in Process 9 of HV.
*It communicates with Guest OS through /proc/partitions/2/vuart/2 file.
*GameOS accesses SM through syscalls 372 - 415


+0x04: previos inode
===  System Manager class  ===
====  Member variables  ====
offset 0x10 - LPAR state (8 bytes)
*offset 0x68 - LPAR auth id
*offset 0x70 - LPAR name
*offset 0x90 - LPAR image path
*offset 0x1C0 - LPAR ability (8 bytes)


+0x08: next inodes
====  Types of System Manager  ====
*There are 6 different SM types
*When Process 9 starts it reads profile file, by default DEFAULT.SPP, by sending requests to SPL (Secure Profile Loader) and constructs System Managers listed in this profile file.
*So, the profile file controls which System Manager types are available later.


+ 0x38:&nbsp; path
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Name
!  LPAR name
|-
|  SCE_CELLOS_PME
|  -
|-
|  SCE_CELLOS_SYSTEM_MGR
|  PS3_LPAR
|-
|  SCE_CELLOS_SYSTEM_MGR_PS2
|  PS2_LPAR
|-
|  SCE_CELLOS_SYSTEM_MGR_PS2_SW
|  PS2_SW_LPAR
|-
|  SCE_CELLOS_SYSTEM_MGR_PS2_GX
|  PS2_GX_LPAR
|-
|  SCE_CELLOS_SYSTEM_MGR_LINUX
|  LINUX_LPAR
|}


+ 0x358: childer_inode
====  Ability Bitmask  ====
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Index
!  Name
!  Ability Bitmask (Hex)
!  Ability Bitmask (Binary)
|-
|  0
|  SCE_CELLOS_PME
|  0x1
|  0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001
|-
|  1
|  SCE_CELLOS_SYSTEM_MGR
|  0x3BF7EF
|  0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 1011 1111 0111 1110 1111
|-
|  2
|  SCE_CELLOS_SYSTEM_MGR_PS2_SW
|  0x1226D
|  0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0010 0010 0110 1101
|-
|  3
|  SCE_CELLOS_SYSTEM_MGR_LINUX
|  0x40012
|  0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 0000 0000 0001 0010
|}


<br>
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Bit Position (from right)
!  SID
!  Description
|-
|  1
|  5 (SET_NEXT_OP)
|  Shutdown or Reboot LPAR
|-
|  2
|  5 (SET_NEXT_OP)
|  Boot PS3 LPAR
|-
|  3
|  5 (SET_NEXT_OP)
|  Boot PS2_SW LPAR
|-
|  4
|  5 (SET_NEXT_OP)
|  Boot LINUX LPAR
|-
|  5
|  12 (CONTROL_LED)
|  Control LED
|-
|  6
|  21 (RING_BUZZER)
|  Ring Buzzer
|-
|  7
|  19 (SET_CONFIG)
|  Set Config
|-
|  10
|  26 (REQUEST_ERROR_LOG)
|  Request Error Log
|-
|  10
|  28 (REQUEST_BE_COUNT)
|  Request BE Count
|-
|  10
|  32 (REQUEST_SYSTEM_EVENT_LOG)
|  Request System Event Log
|-
|  12
|  30 (REQUEST_SC_VERSION)
|  Request SC Version
|-
|  14
|  39 (SET_SHOP_DEMO_MODE)
|  Set Shop Demo Mode
|}


'''MFS_ROOT_INODE'''
===  Service ID (SID)  ===
SM supports 62 (0-61) SIDs.


(2.60) 0x3580B0
The value of SM member variable ability controls which SIDs may be used by LPAR.  


+ 0x60 = ROOT_INODE


<br>
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  SID
!  Name
!  Description
|-
|  0
|  -
|  -
|-
|  1
|  REQUEST
|  -
|-
|  2
|  RESPONSE
|  -
|-
|  3
|  COMMAND
|  -
|-
|  4
|  EXTERN_EVENT
|  -
|-
|  5
|  SET_NEXT_OP
|  -
|-
|  6
|  -
|  -
|-
|  7
|  -
|  -
|-
|  8
|  SET_ATTR
|  -
|-
|  9
|  GET_INTER_LPAR_PARAM
|  -
|-
|  10
|  SET_INTER_LPAR_PARAM
|  -
|-
|  11
|  -
|  -
|-
|  12
|  CONTROL_LED
|  -
|-
|  13
|  TEMPERATURE
|  -
|-
|  14
|  -
|  -
|-
|  15
|  -
|  -
|-
|  16
|  -
|  -
|-
|  17
|  -
|  -
|-
|  18
|  -
|  -
|-
|  19
|  SET_CONFIG
|  -
|-
|  20
|  -
|  -
|-
|  21
|  RING_BUZZER
|  -
|-
|  22
|  -
|  -
|-
|  23
|  -
|  -
|-
|  24
|  -
|  -
|-
|  25
|  FAN_POLICY
|  -
|-
|  26
|  REQUEST_ERROR_LOG
|  -
|-
|  27
|  -
|  -
|-
|  28
|  REQUEST_BE_COUNT
|  -
|-
|  29
|  -
|  -
|-
|  30
|  REQUEST_SC_VERSION
|  -
|-
|  31
|  -
|  -
|-
|  32
|  REQUEST_SYSTEM_EVENT_LOG
|  -
|-
|  33
|  -
|  -
|-
|  34
|  RTC_ALARM
|  -
|-
|  35
|  -
|  -
|-
|  36
|  RTC_ALARM
|  -
|-
|  37
|  -
|  -
|-
|  38
|  RTC_ALARM
|  -
|-
|  39
|  SET_SHOP_DEMO_MODE
|  -
|-
|  40
|  BOOT_PARAMETER
|  -
|-
|  41
|  -
|  -
|-
|  42
|  BOOT_PARAMETER
|  -
|-
|  43
|  -
|  -
|-
|  44
|  FACTORY_PROCESS_COMP
|  -
|-
|  45
|  -
|  -
|-
|  46
|  FACTORY_PROCESS_COMP
|  -
|-
|  47
|  -
|  -
|-
|  48
|  FACTORY_PROCESS_COMP
|  -
|-
|  49
|  -
|  -
|-
|  50
|  FAN_POLICY
|  -
|-
|  51
|  -
|  -
|-
|  52
|  -
|  -
|-
|  53
|  -
|  -
|-
|  54
|  -
|  -
|-
|  55
|  -
|  -
|-
|  56
|  -
|  -
|-
|  57
|  -
|  -
|-
|  58
|  -
|  -
|-
|  59
|  -
|  -
|-
|  60
|  -
|  -
|-
|  61
|  -
|  -
|}


'''SOME ADDRESSES IN 2.60'''
====  12 - CONTROL_LED  ====
*I have tested this service with PSGroove and GameOS is allowed to use it.
*GameOS syscall 386 uses this service.


0x60C010: "/dev" inode
=====  Packet Body  =====
struct sysmgr_ctrl_led
{
  u8 field0;
  u8 field1;
  u8 field2;
  u8 res1;
  u8 field4;
  u8 field5;
  u8 res2[10];
};


0x6AA580: "/proc" inode
=====  Parameters  =====
I have tested the following parameters with this service:  


using linked list you can follow all inodes


= Repository =
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  field0
!  field1
!  field2
!  field4
!  field5
! Description
|-
|  0x1
|  0x0
|  0xFF
|  0xFF
|  0xFF
|  Turns off the power button LED
|-
|  0x1
|  0x1
|  0xFF
|  0xFF
|  0xFF
|  Turns on the power button LED
|}


*Each LPAR has it's own node repository
====  21 - RING_BUZZER  ====
*Repository nodes are stored in a hash table which can have several sub-hash tables.
*I have tested this service with PSGroove and GameOS is allowed to use it


== RepositoryNode ==
===== Packet Body  =====
struct sysmgr_ring_buzzer
{
  u8 res1;
  u8 field1;
  u8 field2;
  u8 res2;
  u32 field4;
};


=== vtable ===
===== Parameters  =====
I have tested the following parameters with this service:


0x00357F58 (3.15)


=== Member variables ===
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  field1
!  field2
!  field4
!  Description
|-
|  0x29
|  0x4
|  0x6
|  Makes a short single beep
|-
|  0x29
|  0xA
|  0x1B6
|  Makes a double beep
|-
|  0x29
|  0x7
|  0x36
|  -
|-
|  0x29
|  0xA
|  0xFFF
| Makes a continuous beep
|}


offset 0x30 - pointer to next RepositoryNode obj
====  Active System Managers in HV dump 3.15  ====
There are 4 active SMs in HV dump.


offset 0x38 - 2nd hash value of name (4 bytes)  
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Index
!  Name
!  LPAR auth id
!  LPAR image pathname
!  Ability Bitmask (Hex)
|-
|  0
|  SCE_CELLOS_PME
|  0x1070000001000001
|  /flh/os/this_is_dummy
|  0x1
|-
|  1
|  SCE_CELLOS_SYSTEM_MGR
|  0x1070000002000001
|  /flh/os/lv2_kernel.self
|  0x3BF7EF
|-
|  2
|  SCE_CELLOS_SYSTEM_MGR_PS2_SW
|  0x1020000003000001
|  /local_sys0/ps2emu/ps2_softemu.self
|  0x1226D
|-
|  3
|  SCE_CELLOS_SYSTEM_MGR_LINUX
|  0x1080000004000001
|  /flh/lx/linux
|  0x40012
|}


offset 0x40 - 1st field name (8 bytes)
*GameOS file image lv2_kernel.self is stored on /dev/rflash1
*Linux file image is stored on /dev/rflash_1x or /dev/rflash_1xp


offset 0x48 - 2nd field name (8 bytes)  
===  Booting Linux LPAR through System Manager  ===
To boot Linux LPAR from GameOS when Linux support was not removed (Ability Mask of PS3 System Manager needs patching&nbsp;&#33;&#33;&#33;):


offset 0x50 - 3rd field name (8 bytes)  
*Send SID packet SET_NEXT_OP with operation OP_LPAR_REBOOT and the index of Linux system manager to System Manager (VUART 2)  
*Send SID packet REQUEST with type SHUTDOWN to System Manager (VUART 2)
*Execute lv1_panic HV call in GameOS
It should also work when Linux support was removed but Linux system manager was not removed from Process 9 and also assumed that a Linux kernel image is stored at the right place in /dev/rflash_1x.


offset 0x58 - 4th field name (8 bytes)
It's just a theory, nothing else, that i gathered during HV reversing. It needs a practical proof. Unfortunately, i don't have access to Hypervisor.


offset 0x60 -&nbsp;? (4 bytes)  
===  Booting modified and reencrypted lv2_kernel.self ===
 
*The System Manager of GameOS sends the path to lv2_kernel.self to SLL (Secure LPAR Loader) and SLL loads it from FLASH device file /dev/rflash1*I stored a new lv2_kernel.self on FLASH directly by writing FLASH from GameOS. It't risky but if you know what you are doing then it's safe. I warned you guys. You could brick your PS3.
offset 0x68 - 1st field value (8 bytes)  
*Then i added a new TOC entry to FLASH device which points to the new lv2_kernel.self
*I patched the path to lv2_kernel.self in the System Manager of GameOS so it points to my new GameOS kernel (You need HV rights to do it)
*Then i rebooted GameOS without rebooting HV, so the patched file path should not change
*This method has the advantage that when the new lv2_kernel.self won't work you can just reboot HV and it will load the original lv2_kernel.self again
*lv2_kernel.self can be also loaded from GameOS dev_flash. For that, you have to change the path to lv2_kernel.self in default.spp from /flh/os/lv2_kernel.self to /local_sys0/lv2_kernel.self and store lv2_kernel.self on dev_flash.


offset 0x70 - 2nd field value (8 bytes)
==  AV Manager  ==
All data sent to VUART 0 in LPAR 2 is written into the data buffer of VUART 5 of LPAR 1.


=== Hash Function  ===
VUART 5 of LPAR 1 is accessed by Process 9 in LPAR 1 through the file /proc/partitions/2/vuart/0.


*The name of a repository node is hashed and 2 hash values (2 32bit values) are produced.
*During initialization, AV Manager opens /dev/ioif0 device and maps different address ranges of the device into address space of Process 9
*The 1st hash value is used to select a sub-hash table.
*/dev/ioif0 is NOT opened and mapped if the value of repository node lv1.rsx.enable is less than 1
*The 2nd hash value is used to find a sub-hash table bucket.
*/dev/ioif0 is mapped with READ/WRITE protection
*Repository nodes in a hash bucket are ordered by the 2nd hash value.
*File descriptor of /dev/ioif0 in Process 9 is 4
<pre>void hash(unsigned long long n1,
*AV Manager supports a lot more commands than used on Linux
          unsigned long long n2,
*Every command is implemented by a class
          unsigned long long n3,
          unsigned long long n4,
          unsigned long *h1,
          unsigned long *h2)
{
    unsigned long long h;
    unsigned long hl;


    h = ((((n1 ^ n4) &gt;&gt; 32) ^ (n2 ^ n3)) ^ (((n2 ^ n3) &gt;&gt; 32) ^ (n1 ^ n4))) &amp; ~0xC0000000ULL;
===  Mapped Address Ranges From /dev/ioif0  ===
The base address of /dev/ioif0 is 0x28000000000. The device supports only mmap system call, it cannot be read or written. It also doesn't support ioctl.


    *h1 = h &amp; 0xFFFFFFFFULL;
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Index
!  Absolute Address Range
!  Size
!  Mapped Address in Process 9 Address Space
|-
|  0
|  0x28000000000 - 0x28000002000
|  0x2000
|  0xA0019000
|-
|  1
|  0x28001800000 - 0x28001801000
|  0x1000
|  0xA0004000
|-
|  2
|  0x28000600000 - 0x28000604000
|  0x4000
|  0xA001A000
|-
|  3
|  0x28000680000 - 0x28000684000
|  0x4000
|  0xA0006000
|-
|  4
|  0x28000080000 - 0x28000088000
|  0x8000
|  0xA000A000
|-
|  5
|  0x28000088000 - 0x28000089000
|  0x1000
|  0xA000E000
|-
|  6
|  0x2800000C000 - 0x2800000D000
|  0x1000
|  0xA0016000
|-
|  7
|  0x2800008A000 - 0x2800008B000
|  0x1000
|  0xA0017000
|-
|  8
|  0x2800008C000 - 0x2800008D000
|  0x1000
|  0xA0018000
|}


    h = ((h &amp; 0x55555555ULL) &lt;&lt; 1) | ((h &amp; 0xAAAAAAAAULL) &gt;&gt; 1);
==  Process socket services  ==
===  Function ID and Packet ID  ===
*Processes 3, 5 and 6 provide services (functions) to other Processes through sockets (something like RPC).
*A service is identified by a function ID.
*Each process has a hash table which maps a function ID to socket port ID.
*Services (functions) can be further differentiated by a packet ID.
*To request a service, a Process sends a packet with specified function and packet ID to the Process that provides the service.
*A process that provides a service (function) has a table of objects which handle different packet IDs.
*Services are synchronous, a client sends a request and waits for a response.
*If a Process requests a service that is located in the same Process then the service is called directly and sockets are not used&nbsp;&#33;&#33;&#33; (e.g. SLL requests from DM creating VUART port during GameOS loading, SLL and DM are in the same Process, so SLL calls DM directly)


    h = ((h &amp; 0x33333333ULL) &lt;&lt; 2) | ((h &amp; 0xCCCCCCCCULL) &gt;&gt; 2);
===  Port ID - Process ID mapping  ===
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Port ID
!  Process ID
|-
|  0x23
|  6
|-
|  0x24
|  5
|-
|  0x25
|  3
|}


    h = ((h &amp; 0xF0F0F0FULL) &lt;&lt; 4) | ((h &amp; 0xF0F0F0F0ULL) &gt;&gt; 4);
===  Function ID - Port ID mapping  ===
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Function ID
!  Port ID
!  Supported Packet IDs
!  Function Description
|-
|  0x2000
|  0x23
|  0x2001 - 0x2017
|  Virtual TRM Manager
|-
|  0x3000
|  0x24
|  0x3001 - 0x3003
|  Secure RTC
|-
|  0x5000
|  0x23
|  0x5001 - 0x500A
|  Storage Manager
|-
|  0x6000
|  0x23
|  0x6001 - 0x6011
|  Update Manager
|-
|  0x9000
|  0x24
|  0x9001 - 0x9016
|  SC Manager
|-
|  0x10000
|  0x23
|  -
|  -
|-
|  0x11000
|  0x25
|  0x11001 - 0x11002
|  SPM (Security Policy Manager)
|-
|  0x14000
|  0x25
|  0x14004 - 0x14005
|  SLL (Secure LPAR Loader)
|-
|  0x15000
|  0x24
|  0x15001, 0x15003, 0x15009
| SPL (Secure Profile Loader)
|-
|  0x17000
|  0x24
|  0x17001 - 0x17017
|  Indi Info Manager
|-
|  0x18000
|  0x25
|  0x18001, 0x18002, 0x18004
|  Dispatcher Manager
|-
|  0x19000
|  0x24
|  0x19002 - 0x19005
|  AIM
|-
|  0x24000
|  0x23
|  0x24001 - 0x24002
|  USB Dongle Authenticator
|-
|  0x25000
|  0x23
|  0x25001 - 0x25002
|  User Token Manager
|}


    hl = (h &lt;&lt; 8) | ((h &amp; 0xFF000000ULL) &gt;&gt; 24);
===  SS Packet  ===
*SS means Secure Service&nbsp;?
*Processes send SS Packets to request a service or to reply to a service request.


    hl = (hl &amp; ~0xFF000000UL) | ((h &amp; 0xFFULL) &lt;&lt; 24);
====  Member variables  ====
*offset 0x8 - packet ID (8 bytes)  
*offset 0x10 - function ID (8 bytes)
*offset 0x18 - return value (4 bytes)  
*offset 0x20 - subject ID (2 * 8 bytes)  


    hl = (hl &amp; ~0x0000FF00UL) | (((h &lt;&lt; 24) | (h &gt;&gt; 8)) &amp; 0x0000FF00ULL);
====  Header  ====
*All services use a common header.
*The header of a SS Packet is 0x28 bytes large.
struct ss_header
{
  uint64_t packet_id;
  uint64_t function_id;
  uint32_t retval;
  uint8_t res[4];
  uint64_t laid;             /* LPAR authority id */
  uint64_t paid;             /* Program authority id */
}


    hl |= 0x1;
=====  SS Service Return Values  =====


    *h2 = hl;
{|  class="wikitable FCK&#95;_ShowTableBorders"
}
!  Error Code
</pre>
!  Description
== Repository nodes from HV 3.15 ==
|-
|  0x00000000
|  Success
|-
|  0x00000005
|  Access Violation
|-
|  0x00000006
|  No Entry&nbsp;?
|-
|  0x00000009
|  Invalid Parameter
|-
|  0x0000000F
| &nbsp;?
|}


[http://www.ps3devwiki.com/index.php?title=Repository_Nodes#3.15_Linux Dump of all repository nodes from HV 3.15]
====  Body  ====
*The body of a SS Packet follows after the header.  
*The size of the body depends on a used service.


== Repository nodes from HV 3.41 dump made from GameOS ==
=== 0x2000 - Virtual TRM Manager  ===
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Packet ID
!  Description
|-
|  0x2001
|  Init
|-
|  0x2002
|  Status
|-
|  0x2003
|  Store
|-
|  0x2004
|  Store
|-
|  0x2005
|  Retrieve
|-
|  0x2006
|  Free
|-
|  0x200A
|  Encrypt
|-
|  0x200B
|  Decrypt
|-
|  0x200C
|  Encrypt With Portability
|-
|  0x200D
|  Decrypt With Portability
|-
|  0x200E
|  Decrypt Master
|-
|  0x2012
|  Backup Flash
|-
|  0x2013
|  Restore Flash
|-
|  0x2014
|  Backup SRK SRH
|-
|  0x2015
|  Restore SRK SRH
|-
|  0x2016
|  Flash Address Size
|-
|  0x2017
|  Force Restart
|}


[http://www.ps3devwiki.com/index.php?title=Repository_Nodes#3.41_GameOS Dump of all repository nodes from HV 3.41 dump made from GameOS]
====  0x200E - Decrypt Master  ====
*This service is e.g. used in Process 6 by USB Dongle Authenticator to decrypt USB Dongle Master Key*GameOS uses this service e.g. in syscall SYS_SS_AD_SIGN*syscall 862 uses Virtual TRM Manager services.


= Buses =
===  0x3000 - Secure RTC  ===
{| class="wikitable FCK&#95;_ShowTableBorders"
!  Packet ID
!  Description
|-
|  0x3001
|  Set RTC
|-
|  0x3002
|  Get Time
|-
|  0x3003
|  Set Time
|}


== SB bus ==
*Secure RTC reads LAIDs and PAIDs that are allowed to access Secure RTC service from DEFAULT.SPP segment SCE_CELLOS_SS_SECURE_RTC.
====  0x3001 - Set RTC  ====
*This service uses SC Manager Set RTC (0x9008) service.


type - 4
====  0x3002 - Get Time  ====
*This service uses SC Manager Get Time (0x9009) service.


index - 1
====  0x3003 - Set Time  ====
*This service uses SC Manager Set Time (0x900A) service.


num_devices - 4 (repository node says this but there are more devices&nbsp;!!!)  
===  0x5000 - Storage Manager  ===
{|  class="wikitable FCK&#95;_ShowTableBorders"
! Packet ID
! Description
|-
|  0x5001
|  Set Encdec Key
|-
|  0x5002
|  Set/Delete ATA (Encdec) Key
|-
|  0x5003
|  Get Random Number
|-
|  0x5004
|  Authenticate BD Drive
|-
|  0x5005
|  Authenticate PS2 Disc
|-
|  0x5006
|  Get Secure Firmware Version
|-
|  0x5007
|  HW disc auth emu
|-
|  0x5008
|  HW mc
|-
|  0x5009
|  HW me auth header
|-
|  0x500A
|  HW me dec block
|}
*Storage Manager service is used e.g. by syscall 864 and syscall SYS_SS_MEDIA_ID*GameOS's VSH uses syscall 864*Storage Manager executes SPU module sb_iso_spu_module.self
*Storage Manager communicates with devices /dev/encdec0 and /dev/rbd0 from LPAR 1
*2nd value from repository node bus1.id is used by Storage Manager
*Storage Manager communicates with sb_iso_spu_module.self through a shared DMA memory buffer and SPU MBox
*EID4 data is passed to sb_iso_spu_module.self module.


== Storage bus ==
=====  SB Isolation DMA Buffer Header  =====
struct sb_iso_header
{
  u32 seqno;
  u32 mbmsg;
  u32 cmd;
  u32 cmd_size;
  u8 cmd_data[0];
}
==== 0x5002 - Set/Delete ATA (Encdec) Key  ====
*Sets/Deletes ATA (Encdec) Key
*The service has only one parameter of size 8 bytes: 0x100 - Set ATA Key and 0x110 - Delete ATA Key.
*This service is used e.g. by System Manager in HV Process 9 during LPAR booting.
*SPM doesn't allow GameOS to use this service.
*3 possible key lengths: 0x40, 0x80 and 0xC0
*This service communicates with /dev/encdec0 device.
*The service uses ENCDEC device commands EdecKgen1 (0x81), EdecKgen2 (0x82), EdecKset (0x83) and EdecKgenFlash (0x84).
*This service communicates also with /dev/rbd0 device.
*I guess that the ATA key is stored encrypted in EID4 data.
*This service is used by LPAR Manager in HV Process 9 during LPAR 2 loading.


type - 5
=====  Service Parameter Table =====


index - 4
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Service Parameter
!  Description
|-  
|  0x100, 0x101
|  Set ATA Key
|-
|  0x110, 0x111
|  Delete ATA Key
|}


num_devices - 4
====  0x5003 - Get Random Number  ====
*I have got access to Get Random Number service through DM and tested it with PSGroove
*The service returns 192-bit random numbers
*It has no input parameters except those in SS packet header
*Storage Manager communicates with device /dev/encdec0.
*This service is used e.g. by USB Dongle Authenticator to generate the body of a challenge or by GameOS to generate hardware random numbers.


= SB bus subsystem =
==== 0x5004 - Authenticate BD Drive  ====
*Used by LPAR Manager in HV Process 9 during LPAR 2 loading and unloading.
*Used by SLL Load GOS service (0x14004) in HV Process 3 during PS2EMU loading and by SLL Unload GOS service (0x14005) during PS2EMU unloading.
*The service expects one additional parameter.
*The service is used during loading of LPAR 2 to authenticate BD drive and during unloading LPAR 2 to reset BD drive.
*The service uses isolated SPU module sv_iso_spu_module.self for BD drive authentication.
*The service communicates with LPAR 1 device /dev/rbd0 through ATAPI interface.


== vtable ==
===== Service Parameter Table =====
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Service Parameter
!  Description
|-
|  0x02
|  Used by SLL service 0x14004 during PS2EMU loading
|-
|  0x1E
|  Used by SLL service 0x14005 during PS2EMU unloading
|-
|  0x29
|  Reset BD Drive
|-
|  0x46
|  Authenticate BD Drive
|}


0x00352600 (3.15)
===  0x6000 - Update Manager  ===
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Packet ID
!  Description
|-
|  0x6001
|  Update Package Tophalf
|-
|  0x6002
|  Inspect Package Tophalf
|-
|  0x6003
|  Get Package Info
|-
|  0x6004
|  Get Fix Instruction
|-
|  0x6005
|  Extract Package Tophalf
|-
|  0x6006
|  Get Extract Package
|-
|  0x6009
|  Get Token Seed
|-
|  0x600A
|  Set Token
|-
|  0x600B
|  Read EPROM
|-
|  0x600C
|  Write EPROM
|-
|  0x6010
|  Check Integrity
|-
|  0x6011
|  Get Applicable Version
|}


== Member variables ==
*Update Manager service is accessed by GameOS syscall 863====  0x6001 - Update Package Tophalf  ====
*The result of the request can be checked by reading the value of repository node ss.update.request.&lt;Request ID&gt; periodically


offset 0x10 - MMIO memory base address  
====  0x6002 - Inspect Package Tophalf  ====
*I have got access to this service through DM and tested it with PSGroove
*This service can tell you if a package can be installed or not, the service just checks a package but does not install it
*Packages can be updated without GameOS&nbsp;&#33;&#33;&#33; I'm using only HV calls and communicate directly with Dispatcher Manager and Update Manager
*I just sent a whole SCE package to GameOS through network, created a LPAR memory region and stored the file there
*It expects a SCE package that can be easily extracted from PUP file*The data of SCE package can be passed either in SS packet itself or through LPAR memory of requester
*When the data of SCE package is too large for SS packet (SS packets are sent through DM, GameOS and DM communicate through VUART that has only 0x800 bytes buffer) then the data of SCE package has to be passed through GameOS LPAR memory. The requester sends a vector of LPAR memory addresses where the data of SCE package is stored and Update Manager maps it into the address space of Process 6
*E.g. Revoke List packages can be sent in SS packets because they are small (about 0x200 bytes). All other packages are too big to sent them in SS packets
*The service is actually split into 2 halfs: Top-Half and Bottom-Half*The Top-Half is executed synchronously with service request and it sends a reply to the requester
*In the reply sent by Top-Half a Request ID (8 bytes) is returned to the requester
*Request ID is calculated by using SHA-1
*After the Top-Half is done, a reply is sent to the requester but the service just checked some input parameter upto now and the passed SCE package was not really checked yet
*The Bottom-Half is called asynchronously to the request, it does the real job, it checks the passed SCE package.
*The result of the request can be checked by reading the value of repository node ss.inspect.request.&lt;Request ID&gt; periodically
*I successfully tested this service with RL_FOR_PROGRAM.img from 3.50 PUP file and the service returned Success, so theoretically i could install this package on my PS3. But of course i want to downgrade and NOT to upgrade.


offset 0x20 - array of 16 pointers to SB devices (0 - Gelic device, 1 - USB device)
=====  Inspect Package Tophalf Return Values  =====
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Error Code
!  Description
|-  
|  0x00000000
|  Success
|-  
|  0x00000013
|  Same Version/Older Version
|-  
|  0x00000014
|  -
|}


== Objects ==
==== 0x6003 - Get Package Info  ====
*I have got access to this service through DM and tested it with PSGroove
*The service expects one additional parameter: package type (valid values are 1-9)
*The service returns the version (8 bytes) of a package type installed
Here are the versions of packages installed on my PS3:


0x00349528 - pointer to pointer to SB bus subsystem object
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Package Type
!  Returned Version
!  Description
!  Package Name in PUP File
|-  
|  1
|  0x0003004100000000
|  Core OS Package
|  CORE_OS_PACKAGE.pkg
|-
|  2
|  0x0003004100000000
|  Revoke List Package for Program
|  RL_FOR_PROGRAM.img
|-
|  3
|  0x0002003000000000
|  Revoke List Package for Package
|  RL_FOR_PACKAGE.img
|-
|  4
|  0xDEADBEAFFACEBABE
|  -
|  -
|-
|  5
|  0xDEADBEAFFACEBABE
|  -
|  -
|-
|  6
|  0x0003004000000000
|  BD Firmware Package
|  BDIT_FIRMWARE_PACKAGE.pkg, BDPT_FIRMWARE_PACKAGE_*.pkg
|-
|  7
|  Invalid Parameter
|  Bluetooth Firmware, dev_flash tarballs
|  BLUETOOTH_FIRMWARE.pkg, dev_flash, dev_flash3
|-
|  8
|  Invalid Parameter
|  -
|  -
|-
|  9
|  Invalid Parameter
|  SC Firmware Package
|  SYS_CON_FIRMWARE_*.pkg
|}


== Memory base address ==
===== Decrypting and Extracting Packages with spu_pkg_rvk_verifier.self  =====
*I have managed to decrypt and extract Revoke List Packages 3.41 and 3.50 by using SPE HV calls and spu_pkg_rvk_verifier.self
*Important: Parameters to SPU module shuold be aligned, i used cache line alignment, don't know exactly alignment requerements. Or else some very strange things could happen. E.g SYSCON firmware was only partially decrypted when i used no cache line alignment.
*I have also managed to decrypt and extract Core OS Packages 1.10, 1.18 Debug, 2.40, 2.80, 3.15, 3.41 and 3.50 by using SPE HV calls and spu_pkg_rvk_verifier.self but it's compressed with zlib.Update Manager in Process 6 from 3.15 uses zlib 1.2.3 inflate to decompress it after it was decrypted and then it stores the data to flash memory.
*I decompressed the decrypted Core OS Packages with zlib.
*I am able now to decrypt and decompress all Core OS Packages
*The decrypted and decompressed package CORE_OS_PACKAGE.pkg looks exactly like it's stored on flash.
*I also decrypted BD Firmwares BDIT_FIRMWARE_PACKAGE.pkg and BDPT_FIRMWARE_PACKAGE.pkg successfully. The firmware is not compressed.
*I also decrypted Bluetooth Firmware BLUETOOTH_FIRMWARE.pkg successfully. The firmware is encrypted and compressed.
*I also managed to decrypt System Controller Firmware SYS_CON_FIRMWARE_01050101.pkg from 3.41.
*Core OS Package 3.50 contains a new isolated SPU module that is not contained in older versions. The SPU module is manu_info_spu_module.self.
*Here links to PS3 Firmwares: [1] and [2]


0x24000000000
RL_FOR_PROGRAM.img 3.41
Offset      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
00000200  00 00 00 04 00 00 00 01  00 03 00 41 00 00 00 00  ...........A....
00000210  00 00 00 06 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000220  00 00 00 03 00 00 00 01  00 03 00 41 00 00 00 00  ...........A....
00000230  00 00 00 00 00 00 00 02  FF FF FF FF FF FF FF FF  ........ÿÿÿÿÿÿÿÿ
00000240  00 00 00 04 00 00 00 01  00 03 00 41 00 00 00 00  ...........A....
00000250  10 70 00 05 FF 00 00 01  FF FF FF FF FF FF FF FF  .p..ÿ...ÿÿÿÿÿÿÿÿ
00000260  00 00 00 04 00 00 00 01  00 03 00 41 00 00 00 00  ...........A....
00000270  10 70 00 05 FE 00 00 01  FF FF FF FF FF FF FF FF  .p..þ...ÿÿÿÿÿÿÿÿ
00000280  00 00 00 04 00 00 00 01  00 03 00 41 00 00 00 00  ...........A....
00000290  10 70 00 05 FD 00 00 01  FF FF FF FF FF FF FF FF  .p..ý...ÿÿÿÿÿÿÿÿ
000002A0  00 00 00 04 00 00 00 01  00 03 00 41 00 00 00 00  ...........A....
000002B0  10 70 00 05 FC 00 00 01  FF FF FF FF FF FF FF FF  .p..ü...ÿÿÿÿÿÿÿÿ
000002C0  00 00 00 04 00 00 00 03  00 01 00 00 00 00 00 00  ................
000002D0  10 70 00 04 00 00 00 01  FF FF FF FF FF FF FF FF  .p......ÿÿÿÿÿÿÿÿ


All SB bus device MMIO addresses are relative to this memory address.  
RL_FOR_PROGRAM.img 3.50
Offset      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
00000200  00 00 00 04 00 00 00 01  00 03 00 50 00 00 00 00  ...........P....
00000210  00 00 00 06 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000220  00 00 00 03 00 00 00 01  00 03 00 50 00 00 00 00  ...........P....
00000230  00 00 00 00 00 00 00 02  FF FF FF FF FF FF FF FF  ........ÿÿÿÿÿÿÿÿ
00000240  00 00 00 04 00 00 00 01  00 03 00 50 00 00 00 00  ...........P....
00000250  10 70 00 05 FF 00 00 01  FF FF FF FF FF FF FF FF  .p..ÿ...ÿÿÿÿÿÿÿÿ
00000260  00 00 00 04 00 00 00 01  00 03 00 50 00 00 00 00  ...........P....
00000270  10 70 00 05 FE 00 00 01  FF FF FF FF FF FF FF FF  .p..þ...ÿÿÿÿÿÿÿÿ
00000280  00 00 00 04 00 00 00 01  00 03 00 50 00 00 00 00  ...........P....
00000290  10 70 00 05 FD 00 00 01  FF FF FF FF FF FF FF FF  .p..ý...ÿÿÿÿÿÿÿÿ
000002A0  00 00 00 04 00 00 00 01  00 03 00 50 00 00 00 00  ...........P....
000002B0  10 70 00 05 FC 00 00 01  FF FF FF FF FF FF FF FF  .p..ü...ÿÿÿÿÿÿÿÿ
000002C0  00 00 00 04 00 00 00 03  00 01 00 00 00 00 00 00  ................
000002D0  10 70 00 04 00 00 00 01  FF FF FF FF FF FF FF FF  .p......ÿÿÿÿÿÿÿÿ


== SB device MMIO/DMA memory region ==
RL_FOR_PACKAGE.img 3.41
  Offset      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
00000200  00 00 00 03 00 00 00 02  00 01 00 00 00 00 00 00  ................
00000210  00 00 00 01 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000220  00 00 00 01 00 00 00 00  00 00 00 01 00 00 00 02  ................
00000230  00 00 00 08 00 05 00 00  00 00 00 00 00 00 00 00  ................


=== vtable ===
RL_FOR_PACKAGE.img 3.50
  Offset      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
00000200  00 00 00 03 00 00 00 02  00 01 00 00 00 00 00 00  ................
00000210  00 00 00 01 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000220  00 00 00 01 00 00 00 00  00 00 00 01 00 00 00 02  ................
00000230  00 00 00 08 00 05 00 00  00 00 00 00 00 00 00 00  ................


0x352308 (3.15)
CORE_OS_PACKAGE.pkg 3.15
Here is a piece of data from decrypted and decompressed package.
Offset      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
00000000  00 00 00 01 00 00 00 17  00 00 00 00 00 6F FF E0  .............oÿà
00000010  00 00 00 00 00 00 04 60  00 00 00 00 00 04 00 00  .......`........
00000020  63 72 65 73 65 72 76 65  64 5F 30 00 00 00 00 00  creserved_0.....
00000030  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000040  00 00 00 00 00 04 04 60  00 00 00 00 00 00 00 08  .......`........
00000050  73 64 6B 5F 76 65 72 73  69 6F 6E 00 00 00 00 00  sdk_version.....
00000060  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000070  00 00 00 00 00 04 04 80  00 00 00 00 00 01 E5 CC  .......€......åÌ
00000080  6C 76 31 6C 64 72 00 00  00 00 00 00 00 00 00 00  lv1ldr..........
00000090  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000000A0  00 00 00 00 00 05 EA 80  00 00 00 00 00 01 6D A0  ......ê€......m&nbsp;
000000B0  6C 76 32 6C 64 72 00 00  00 00 00 00 00 00 00 00  lv2ldr..........
000000C0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000000D0  00 00 00 00 00 07 58 80  00 00 00 00 00 01 2E 44  ......X€.......D
000000E0  69 73 6F 6C 64 72 00 00  00 00 00 00 00 00 00 00  isoldr..........
000000F0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000100  00 00 00 00 00 08 87 00  00 00 00 00 00 01 DA E4  ......‡.......Úä
00000110  61 70 70 6C 64 72 00 00  00 00 00 00 00 00 00 00  appldr..........
00000120  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000130  00 00 00 00 00 0A 61 E4  00 00 00 00 00 00 FA CC  ......aä......úÌ
00000140  73 70 75 5F 70 6B 67 5F  72 76 6B 5F 76 65 72 69  spu_pkg_rvk_veri
00000150  66 69 65 72 2E 73 65 6C  66 00 00 00 00 00 00 00  fier.self.......
00000160  00 00 00 00 00 0B 5C B0  00 00 00 00 00 00 5C 94  ......°......”
00000170  73 70 75 5F 74 6F 6B 65  6E 5F 70 72 6F 63 65 73  spu_token_proces
00000180  73 6F 72 2E 73 65 6C 66  00 00 00 00 00 00 00 00  sor.self........
00000190  00 00 00 00 00 0B B9 44  00 00 00 00 00 00 65 D0  ......¹D......eÐ
000001A0  73 70 75 5F 75 74 6F 6B  65 6E 5F 70 72 6F 63 65  spu_utoken_proce
000001B0  73 73 6F 72 2E 73 65 6C  66 00 00 00 00 00 00 00  ssor.self.......
000001C0  00 00 00 00 00 0C 1F 14  00 00 00 00 00 01 53 2C  ..............S,
000001D0  73 63 5F 69 73 6F 2E 73  65 6C 66 00 00 00 00 00  sc_iso.self.....
000001E0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000001F0  00 00 00 00 00 0D 72 40  00 00 00 00 00 00 44 98  [email protected]˜
00000200  61 69 6D 5F 73 70 75 5F  6D 6F 64 75 6C 65 2E 73  aim_spu_module.s
00000210  65 6C 66 00 00 00 00 00  00 00 00 00 00 00 00 00  elf.............
00000220  00 00 00 00 00 0D B6 D8  00 00 00 00 00 00 D7 F0  ......¶Ø......×ð
00000230  73 70 70 5F 76 65 72 69  66 69 65 72 2E 73 65 6C  spp_verifier.sel
00000240  66 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  f...............
00000250  00 00 00 00 00 0E 8E C8  00 00 00 00 00 00 80 8C  ......ŽÈ......€Œ
00000260  6D 63 5F 69 73 6F 5F 73  70 75 5F 6D 6F 64 75 6C  mc_iso_spu_modul
00000270  65 2E 73 65 6C 66 00 00  00 00 00 00 00 00 00 00  e.self..........
00000280  00 00 00 00 00 0F 0F 54  00 00 00 00 00 00 88 B8  .......T......ˆ¸
00000290  6D 65 5F 69 73 6F 5F 73  70 75 5F 6D 6F 64 75 6C  me_iso_spu_modul
000002A0  65 2E 73 65 6C 66 00 00  00 00 00 00 00 00 00 00  e.self..........
000002B0  00 00 00 00 00 0F 98 0C  00 00 00 00 00 00 C0 78  ......˜.......Àx
000002C0  73 76 5F 69 73 6F 5F 73  70 75 5F 6D 6F 64 75 6C  sv_iso_spu_modul
000002D0  65 2E 73 65 6C 66 00 00  00 00 00 00 00 00 00 00  e.self..........
000002E0  00 00 00 00 00 10 58 84  00 00 00 00 00 00 5D B0  ......X„......]°
000002F0  73 62 5F 69 73 6F 5F 73  70 75 5F 6D 6F 64 75 6C  sb_iso_spu_modul
00000300  65 2E 73 65 6C 66 00 00  00 00 00 00 00 00 00 00  e.self..........
00000310  00 00 00 00 00 10 B6 34  00 00 00 00 00 00 22 A0  ......¶4......&quot;&nbsp;
00000320  64 65 66 61 75 6C 74 2E  73 70 70 00 00 00 00 00  default.spp.....
00000330  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000340  00 00 00 00 00 10 D9 00  00 00 00 00 00 12 B1 70  ......Ù.......±p
00000350  6C 76 31 2E 73 65 6C 66  00 00 00 00 00 00 00 00  lv1.self........
00000360  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000370  00 00 00 00 00 23 8A 80  00 00 00 00 00 03 E8 28  .....#Š€......è(
00000380  6C 76 30 00 00 00 00 00  00 00 00 00 00 00 00 00  lv0.............
00000390  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000003A0  00 00 00 00 00 27 72 A8  00 00 00 00 00 16 EE B8  .....'r¨......î¸
000003B0  6C 76 32 5F 6B 65 72 6E  65 6C 2E 73 65 6C 66 00  lv2_kernel.self.
000003C0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000003D0  00 00 00 00 00 3E 61 60  00 00 00 00 00 07 0F 94  .....&gt;a`.......”
000003E0  65 75 72 75 73 5F 66 77  2E 62 69 6E 00 00 00 00  eurus_fw.bin....
000003F0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000400  00 00 00 00 00 45 70 F4  00 00 00 00 00 07 FC 48  .....Epô......üH
00000410  65 6D 65 72 5F 69 6E 69  74 2E 73 65 6C 66 00 00  emer_init.self..
00000420  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000430  00 00 00 00 00 4D 6D 3C  00 00 00 00 00 06 16 00  .....Mm&lt;........
00000440  68 64 64 5F 63 6F 70 79  2E 73 65 6C 66 00 00 00  hdd_copy.self...
00000450  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00040460  33 31 35 2E 30 30 30 0A  00 00 00 00 00 00 00 00  315.000.........
00040470  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................


=== Member variables ===
BDIT_FIRMWARE_PACKAGE.pkg 3.50 Here is a piece of data from decrypted package.
Offset      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
00000300  43 6F 70 79 72 69 67 68  74 28 43 29 20 32 30 30  Copyright(C) 200
00000310  35 2D 32 30 30 36 2C 20  53 6F 6E 79 20 43 6F 6D  5-2006, Sony Com
00000320  70 75 74 65 72 20 45 6E  74 65 72 74 61 69 6E 6D  puter Entertainm
00000330  65 6E 74 20 49 6E 63 2E  1A 00 00 00 00 00 00 00  ent Inc.........
00000340  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000350  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000360  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000370  41 96 18 D3 2D 8F 0F 68  11 4D A7 09 E4 1F A7 6F  A–.Ó- .h.M§.ä.§o
00000380  EF 29 48 A0 E9 F2 A8 F0  CC 4B F3 4D E0 4A B0 17  ï)H&nbsp;éò¨ðÌKóMàJ°.
00000390  C2 DA 07 5F 96 B3 C8 8D  E1 06 2E 3A 1D A7 FD 20  ÂÚ._–³È á..:.§ý


offset 0x18 - pointer to previous bus memory region object
BDPT_FIRMWARE_PACKAGE_301R.pkg 3.50  Here is a piece of data from decrypted package.
Offset      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
00000300  43 6F 70 79 72 69 67 68  74 28 43 29 20 32 30 30  Copyright(C) 200
00000310  35 2D 32 30 30 39 2C 20  53 6F 6E 79 20 43 6F 6D  5-2009, Sony Com
00000320  70 75 74 65 72 20 45 6E  74 65 72 74 61 69 6E 6D  puter Entertainm
00000330  65 6E 74 20 49 6E 63 2E  1A 00 00 00 00 00 00 00  ent Inc.........
00000340  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000350  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000360  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000370  80 18 D2 E4 22 AA 2B D7  85 47 F4 40 53 9A 04 0C  €.Òä&quot;ª+×…Gô@Sš..
00000380  D0 B8 A5 04 20 51 9E 90  09 4F 2E 78 BA 32 C0 EA  и¥. Qž .O.xº2Àê
00000390  E9 61 96 ED D8 2A 70 C0  59 68 4E B2 47 25 9C 97  éa–íØ*pÀYhN²G%œ—


offset 0x20 - pointer to next bus memory region object
BLUETOOTH_FIRMWARE.pkg 3.41
Offset      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
00000000  52 43 32 39 5F 66 69 72  6D 77 61 72 65 5F 66 6F  RC29_firmware_fo
00000010  6F 74 65 72 2E 64 66 75  00 00 00 00 00 00 00 00  oter.dfu........
00000020  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000030  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000040  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000050  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000060  00 00 00 00 30 30 30 30  36 34 34 00 30 30 30 30  ....0000644.0000
00000070  30 30 30 00 30 30 30 30  30 30 30 00 30 30 30 30  000.0000000.0000
00000080  31 35 36 36 33 30 30 00  31 31 30 36 34 33 34 36  1566300.11064346
00000090  33 30 36 00 30 31 35 34  36 33 00 20 30 00 00 00  306.015463. 0...
000000A0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000000B0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000000C0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000000D0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000000E0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000000F0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000100  00 75 73 74 61 72 20 20  00 72 6F 6F 74 00 00 00  .ustar  .root...
00000110  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000120  00 00 00 00 00 00 00 00  00 72 6F 6F 74 00 00 00  .........root...
00000130  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000140  00 00 00 00 00 00 00 00  00 30 30 30 30 30 30 30  .........0000000
00000150  00 30 30 30 30 30 30 30  00 00 00 00 00 00 00 00  .0000000........
000A5950  84 1B 00 C0 94 04 00 00  74 06 00 00 45 75 72 75  „..À”...t...Euru
000A5960  73 5F 50 72 69 6D 61 72  79 5F 50 68 79 00 00 00  s_Primary_Phy...
000A5970  4D 61 72 76 65 6C 6C 5F  41 50 00 00 94 BB 01 C0  Marvell_AP..”».À
000B7CC0  00 00 00 00 01 10 60 23  4D 61 72 76 65 6C 6C 20  ......`#Marvell
000B7CD0  46 69 72 6D 77 61 72 65  20 53 44 4B 20 56 65 72  Firmware SDK Ver
000B7CE0  73 69 6F 6E 20 32 2E 33  2E 30 54 74 5D 04 02 2B  sion 2.3.0Tt]..+
000B7CF0  0F 14 E1 36 04 32 0A 1A  FD 08 32 1A 1A C1 08 02  ..á6.2..ý.2..Á..
000F42B0  44 6F 53 68 61 72 65 64  4B 65 79 53 65 71 31 3A  DoSharedKeySeq1:
000F42C0  20 45 6E 74 65 72 65 64  20 2D 2D 2D 20 72 73 70    Entered --- rsp
000F42D0  4D 61 63 20 3D 20 25 30  32 78 3A 25 30 32 78 3A  Mac =&nbsp;%02x:%02x:
000F42E0  25 30 32 78 3A 25 30 32  78 3A 25 30 32 78 3A 25  &nbsp;%02x:%02x:%02x:%
000F42F0  30 32 78 0A 00 00 00 00  6D 6C 6D 65 41 75 74 68  02x.....mlmeAuth
000F4300  44 6F 53 68 61 72 65 64  4B 65 79 53 65 71 31 3A  DoSharedKeySeq1:
000F4310  20 56 61 6C 69 64 61 74  69 6F 6E 20 66 61 69 6C    Validation fail
000F4320  65 64 20 2D 2D 2D 20 72  73 70 4D 61 63 20 3D 20  ed --- rspMac =
000F4330  25 30 32 78 3A 25 30 32  78 3A 25 30 32 78 0A 00  &nbsp;%02x:%02x:%02x..
000F4340  6D 6C 6D 65 41 75 74 68  44 6F 53 68 61 72 65 64  mlmeAuthDoShared
000F4350  4B 65 79 53 65 71 33 3A  20 76 61 6C 69 64 61 74  KeySeq3: validat
000F4360  69 6F 6E 20 66 61 69 6C  65 64 21 20 2D 2D 2D 20  ion failed&#33; ---
000F4370  72 73 70 4D 61 63 20 3D  20 25 30 32 78 3A 25 30  rspMac =&nbsp;%02x:%0
000F4380  32 78 3A 25 30 32 78 0A  00 65 65 70 72 6F 6D 00  2x:%02x..eeprom.
000F4390  62 74 5F 68 63 69 00 62  74 5F 75 61 72 74 00 75  bt_hci.bt_uart.u
000F43A0  73 62 30 00 75 73 62 31  00 4F 53 41 00 77 6C 61  sb0.usb1.OSA.wla
000F43B0  F3 B8 E9 70 01 00 00 00  1C 6B 03 00 00 02 00 00  ó¸ép.....k......


offset 0x30 - relative bus memory start address
SYS_CON_FIRMWARE_01050101.pkg 3.41
Offset      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
00000300  1B 2D 70 0F AB 5E B3 99  68 20 FE 3D E1 80 6A 1D  .-p.«^³™h þ=á€j.
00000310  B8 FD 37 CF CD 45 85 AB  51 F7 05 E3 EA 32 A5 EA  ¸ý7ÏÍE…«Q÷.ãê2¥ê
00000320  67 45 F9 48 00 00 00 00  00 10 00 00 C0 0F 00 00  gEùH........À...
00000330  8B 04 07 F9 9B A2 90 3A  75 89 F1 42 12 59 DA 0D  ‹..ù›¢ :u‰ñB.YÚ.
00000340  21 7C A2 C3 5A E4 78 00  10 8D 4B F7 A2 73 9C 63  &nbsp;&#33;&#124;¢ÃZäx.. K÷¢sœc
00000350  5D 8D 5D 49 16 C7 6F 2C  AD 33 FE 1F D3 6C A1 CA  ] ]I.Ço,­3þ.Ól¡Ê
00000360  BA AD 2B FE 8F 33 71 D7  C5 E6 5C FF BF 77 6C 80  º­+þ 3q×Åæÿ¿wl€
00000370  F2 BE 11 BB 3C 52 52 DC  A9 68 E5 24 AD 4F F3 48  ò¾.»&lt;RRÜ©hå$­OóH


offset 0x38 - size of bus memory region
====  0x6005 - Extract Package Tophalf  ====
*The result of the request can be checked by reading the value of repository node ss.extract.request.&lt;Request ID&gt; periodically


== SB bus device ==
====  0x600B - Read EEPROM ====
*I have got read access to EEPROM of Update Manager through DM and tested it with PSGroove
*I read PRODUCT_MODE from it successfully, PRODUCT_MODE = 0x000000FF
*The service expects one additional parameter: offset (4 bytes)
*The service accepts only some predefined offsets
*The service returns the specified offset and the value at this offset


=== vtable ===
===== EEPROM Offset Table  =====
Here is the table of EEPROM offsets that can be accessed through Update Manager (3.15):


0x00352620 (3.15)


=== Member variables ===
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Offset
!  Size
!  Description
|-
|  0x48C06
|  1
|  FSELF Control Flag
|-
|  0x48C07
|  1
|  Product Mode (UM allows to read this offset, it can be also written but only when already in product mode)
|-
|  0x48C0A
|  1
|  QA Flag
|-
|  0x48C13
|  1
|  Device Type
|-
|  0x48C42
|  1
|  HDD Copy Mode
|-
|  0x48C50
|  0x10
|  Debug Support Flag
|-
|  0x48C60
|  1
|  Update Status
|-
|  0x48C61
|  1
|  Recover Mode Flag
|-
|  0x48D3E
|  0x50
| QA Token (UM doesn't allow access to this offset but SC Manager can read/write it)
|}


offset 0x18 - array of pointers to MMIO memory region objects owned by device (8 * 8 bytes)
====  0x600C - Write EEPROM  ====
*Writting to EEPROM of Update Manager is also possible through DM
*Tested this service successfully with QA flag


offset 0x60 - pointer to first DMA region object
====  0x6010 - Check Integrity  ====
*This service checks integrity of important files stored on /dev/rflash1, e.g. lv0 or lv1*The service is used e.g. by System Manager
*When product mode is NOT 0xFF then check is skipped&nbsp;&#33;&#33;&#33;


offset 0x6C - device opened flag (1 byte, 0 - not opened, 1 - already opened)
====  0x6011 - Get Applicable Version  ====
*I have got access to this service through DM and PSGroove and tested it
*The service expects one additional unknown parameter of size 4 bytes, it has to be 0x00000001 or else the service fails


offset 0x70 - id of LPAR that opened this device
Here is the return value:


offset 0x90 - pointer to an object that contains the address of interrupt handler for this device and SB bus interrupt index
00 00 00 01 00 00 00 00 00 03 00 20 00 00 00 00 00 00 00 00 00 00 00 01
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01


== Gelic device (Network Interface) ==
====  BD Firmware Update  ====
*Update Manager in HV Process 6 updates BD firmware through ATAPI Interface of /dev/rbd0 device.
*BD firmware is sent to BD drive by using ATAPI Write Buffer (0x3B) command with Mode 0x07 (Download microcode with offsets and save) and Buffer ID 0x00.
*The current BD drive firmware version and hash is also stored by and retrieved from SYSCON by using SC Manager Get/Set Region Data (0x9006/0x9007) service. After successfull BD firmware update, Update Manager sends the new firmware version and hash to SYSCON.
*BD firmware package is decrypted, SCE header size + 0x80 bytes are skipped and data beginning with copyright message is sent to BD drive.
*BD firmware is sent packet wise, one packet is at most 0x8000 bytes.
*After each sent packet, Update Manager checks the result by using ATAPI Request Sense (0x3) command.
*Theoretically, BD firmware update can be done also from GameOS by using ATAPI interface of the BD drive.


device id = 0
=====  Detecting BD Drive Type, Generation and Revision  =====
*To detect BD drive type, Update Manager uses ATAPI Inquiry command.
*To detect BD drive generation, Update Manager uses ATAPI Mode Sense 10 command.


interrupt index = 8
BD Drive Type Table  Here is the BD Drive Type Table extracted from HV Process 6 (3.15):


The Gelic device is similar to the spider_net device from Toshiba. There are some differences with mmio initialization values within LV1 in comparison to the spider_net.c linux driver.
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Index
!  Vendor Identification String
!  Drive Type
|-
|  0
| &quot;SONY    EmerFlashROM&quot;
|  0x2100000000000001
|-
|  1
| &quot;SONY    PS-EMBOOT  300R&quot;
|  0x2100000000000001
|-
|  2
| &quot;SONY    BDRW AQUAM(BDIT)&quot;
|  0x1100000000000001
|-
|  3
| &quot;SONY    PS-SYSTEM  300R&quot;
|  0x1100000000000001
|-
|  4
| &quot;SONY    PS-SYSTEM  V300&quot;
|  0x1100000000000001
|-
|  5
| &quot;SCEI    EMER-FLASH-8&quot;
|  0x2200000000000002
|-
|  6
| &quot;SONY    PS-EMBOOT  301R&quot;
|  0x2200000000000002
|-
|  7
| &quot;SONY    PS-SYSTEM  301R&quot;
|  0x1200000000000002
|-
|  8
| &quot;SONY    PS-EMBOOT  302R&quot;
|  0x2200000000000003
|-
|  9
| &quot;SONY    PS-SYSTEM  302R&quot;
|  0x1200000000000003
|-
|  10
| &quot;SONY    PS-EMBOOT  303R&quot;
|  0x2200000000000004
|-
|  11
| &quot;SONY    PS-SYSTEM  303R&quot;
|  0x1200000000000004
|-
|  12
| &quot;SONY    PS-EMBOOT  304R&quot;
|  0x2200000000000005
|-
|  13
| &quot;SONY    PS-SYSTEM  304R&quot;
|  0x1200000000000005
|-
|  14
| &quot;SONY    PS-EMBOOT  306R&quot;
|  0x2200000000000007
|-
|  15
| &quot;SONY    PS-SYSTEM  306R&quot;
|  0x1200000000000007
|}


Gelic defines:
=====  Methods (HV Process 6)  =====
{| class="wikitable sortable"
*update_manager_update_bd_firmware - 0x800064BC (3.15)
|-
*bd_updater_prepare_drive - 0x80011A88 (3.15)
! DEFINE !! Value
*bd_updater_send_firmware - 0x80011544 (3.15)
|-
*bd_updater_disable_reqsense - 0x80010410 (3.15)
| GELIC_CKRCTRL_REGISTER || 0xFF0
*bd_updater_enable_reqsense - 0x800104D8 (3.15)
|-
*send_atp_command - 0x80023B10 (3.15)
| GELIC_CKRCTRL_STOP_VALUE || 0x00000105
|-
| GELIC_CKRCTRL_RUN_VALUE || 0x1D7F0105
|-
| GELIC_MACADDR_HIGH_REG || 0x500
|-
| GELIC_MACADDR_LOW_REG || 0x504
|-
|}


=== MMIO regions ===
=== 0x9000 - SC Manager ===
*SC Manager cannot be accessed directly by using DM unfortunately (DM discards all requests) but it's used by other services that are accessable through DM
*E.g. Update Manager services "Read EEPROM" and "Write EEPROM" send requests to SC Manager services "Read EEPROM" and "Write EEPROM"
*SC Manager runs sc_iso.self* With full HV rights you could patch Dispatcher Manager and enable access to SC Manager from GameOS.


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK&#95;_ShowTableBorders"  
|-
!  Packet ID
! Index
!  Description
! Relative Bus Start Address
|-  
! Absolute Bus Start Address
|  0x9001
! Size
|  Get SRH
|-
|-
| 0
|  0x9002
| 0x2800
|  Set SRH
| 0x24000002800
|-  
| 0x200
| 0x9003
|-
|  Encrypt
| 1
|-
| 0x3004000
| 0x9004
| 0x24003004000
| Decrypt
| 0x1000
|-  
|-
| 0x9005
| 2
| Init For VTRM
| -  
|-
| -  
| 0x9006
| -
| Get Region Data
|-
|-  
| 3
| 0x9007
| -  
|  Set Region Data
| -
|-  
| -
|  0x9008
|-
|  Set RTC
| 4
|-  
| -  
|  0x9009
| -
|  Get Time
| -
|-  
|-
|  0x900A
| 5
|  Set Time
| -  
|-  
| -
| 0x900B
| -
|  Read EPROM
|-
|-  
| 6
| 0x900C
| -  
|  Write EPROM
| -
|-  
| -
| 0x900D
|-
| Init For Updater
| 7
|-  
| -  
| 0x900E
| -
|  Get SC Status
| -
|-  
| 0x9011
| SC Binary Patch
|-  
| 0x9012
|  SC RTC Factory
|-  
| 0x9013
| Correct RTC Factory
|-  
| 0x9014
|  Set SC Status
|-  
| 0x9015
| Backup Root Info
|-  
| 0x9016
| Restore Root Info
|}
|}


=== DMA regions ===
====  0x9001 - SC Get SRH ====
 
struct ss_sc_mgr_get_srh
{| class="wikitable FCK__ShowTableBorders"
{
|-
  u8 field0[20];
! Relative Bus Start Address
  u8 res1[4];
! Absolute Bus Start Address
  u8 field18[20];
! Size
  u8 res2[4];
|-
};
| 0xA0000000
====  0x9003 - SC Encrypt  ====
| -
*There are 5 different types/kinds of encryption: 1 - 5.
| 0x8000
struct ss_sc_mgr_encrypt
|-
{
| 0xC0000000
  u32 type;              /* 1 - 5 */
| -
  u8 res[4];
| 0x10000000
  u8 field8[16];
|}
  u8 field18[16];
  u64 field28;
};


== SATA Controller 1 device ==
====  0x9004 - SC Decrypt ====
*There are 5 different types/kinds of decryption: 1 - 5.
*Virtual TRM Decrypt Master (0x200E) service uses e.g. decryption type 4.


device id = 1
====  0x9006 - SC Get Region Data  ====
*This service expects an ID. The valid range of ID is 0 - 15.
*E.g. Update Manager uses this service to retrieve hash and version of some SELFs and firmwares, e.g. lv0 and lv1.


interrupt index = 49
struct ss_sc_mgr_get_region_data
{
  u64 id;
  u64 data_size;    /* max 0x30 bytes */
  u8 data[0];
};


=== MMIO regions ===
===== Update Package Type - ID Mapping Table =====


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK&#95;_ShowTableBorders"  
|-
! Update Package Type
! Index
! ID
! Relative Bus Start Address
|-  
! Absolute Bus Start Address
| 1
! Size
| 0
|-
|-  
| 0
| 2
| 0x2000
| 2
| 0x24000002000
|-  
| 0x200
| 3
|-
| 4
| 1  
|-  
| 0x3000000
| 4
| 0x24003000000
| 6
| 0x1000
|-  
|-
| 5
| 2  
| 7
| 0x3800000
|-  
| 0x24003800000
| 6
| 0x1000
| 8
|-
| 3  
| 0x3802000
| 0x24003802000
| 0x1000
|-
| 4  
| -
| -
| -
|-
| 5  
| -
| -
| -
|-
| 6  
| -
| -
| -
|-
| 7
| -
| -
| -
|}
|}


=== DMA regions ===
====  0x9007 - SC Set Region Data ====
 
*This service expects an ID. The valid range of ID is 0 - 15.
{| class="wikitable FCK__ShowTableBorders"
*E.g. Update Manager uses this service to store hash and version of some SELFs and firmwares, e.g. lv0 and lv1.
|-
! Relative Bus Start Address
! Absolute Bus Start Address
! Size
|-
| 0xA0000000
| -
| 0x1000
|-
| 0xA0001000
| -
| 0x1000
|-
| 0xA0002000
| -
| 0x1000
|}


== SATA Controller 2 device ==
  struct ss_sc_mgr_set_region_data
{
  u64 id;
  u64 data_size;    /* max 0x30 bytes */
  u8 data[0];
};


device id = 2  
====  0x900B - SC Read EPROM  ====
* There are 2 ways to access SC EPROM: NVS Service and Device Access Service.
*NVS Service uses Block ID and Block Offset.
* Not all EPROM offsets can be accessed through SC Manager.


interrupt index = 13
struct ss_sc_mgr_read_eprom
{
  u32 offset;
  u8 res1[4];
  u32 nread;              /* max 0x100 bytes */
  u8 res2[4];
  u64 buf_size;
  u8 buf[0];
  /* here follows buf */
};


=== MMIO regions ===
===== EPROM Offset - Block ID and Block Offset Mapping Table (NVS Service) =====


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK&#95;_ShowTableBorders"  
|-
! EPROM Offset
! Index
! Block ID
! Relative Bus Start Address
! Block Offset
! Absolute Bus Start Address
|-  
! Size
| 0x48000 - 0x480FF
|-
| 0x00
| 0
| 0x48000 - 0x480FF
| 0x2200
|-
| 0x24000002200
| 0x48800 - 0x488FF
| 0x200
| 0x01
|-
| 0x48800 - 0x488FF
| 1
|-
| 0x3001000
| 0x48C00 - 0x48CFF
| 0x24003001000
| 0x02
| 0x1000
| 0x48C00 - 0x48CFF
|-
|-  
| 2
| 0x48D00 - 0x48DFF
| 0x3801000
| 0x03
| 0x24003801000
| 0x48D00 - 0x48DFF
| 0x1000
|-  
|-
| 0x2F00 - 0x2FFF
| 3
| 0x10
| 0x3803000
| 0x2F00 - 0x2FFF
| 0x24003803000
|-  
| 0x1000
| 0x3000 - 0x30FF
|-
| 0x20
| 4
| 0x3000 - 0x30FF
| -  
|-  
| -
| All other offsets
| -
| Invalid
|-
| Invalid
| 5
| -  
| -
| -
|-
| 6
| -  
| -
| -
|-
| 7
| -
| -
| -
|}
|}


=== DMA regions ===
==== 0x900C - SC Write EPROM  ====
struct ss_sc_mgr_write_eprom
{
  u32 offset;
  u8 res1[4];
  u32 nwrite;
  u8 res2[4];
  u64 buf_size;
  u8 buf[0];
  /* here follows buf */
};


{| class="wikitable FCK__ShowTableBorders"
====  0x900E - SC Get Status ====
|-
Here is what the service returned on my fat PS3:
! Relative Bus Start Address
! Absolute Bus Start Address
! Size
|-
| 0xA0000000
| -
| 0x1000
|-
| 0xA0001000
| -
| 0x1000
|-
| 0xA0002000
| -
| 0x1000
|}


== USB Controller 1 device ==
  0x00 0x00 0x00 0x03 0x00 0x00 0x00 0x00 0xC0 0x00 0x00 0xFF 0x00 0x00 0x00 0x00


device id = 3
So, version is 0x00000003 and mode is 0xC00000FF.


=== MMIO regions  ===


{| class="wikitable FCK__ShowTableBorders"
struct ss_sc_mgr_get_sc_status
|-
{
! Index
  u32 version;
! Relative Bus Start Address
  u8 res1[4];
! Absolute Bus Start Address
  u32 mode;
! Size
  u8 res2[4];
|-
};
| 0
| 0x2400
| 0x24000002400
| 0x200
|-
| 1
| 0x3010000
| 0x24003010000
| 0x10000
|-
| 2
| 0x3810000
| 0x24003810000
| 0x10000
|-
| 3
| -
| -
| -
|-
| 4  
| -
| -
| -
|-
| 5
| -
| -
| -
|-
| 6
| -
| -
| -
|-
| 7
| -
| -
| -
|}


=== DMA regions ===
==== 0x9011 - SC Binary Patch  ====
*This service is used by Update Manager to send a new SC firmware version to SYSCON.


{| class="wikitable FCK__ShowTableBorders"
=====  SC Isolation DMA Buffer Header  =====
|-
struct sc_iso_header
! Relative Bus Start Address
{
! Absolute Bus Start Address
  u32 seqno;
! Size
  u32 mbmsg;
|-
  u32 cmd;
| 0xC0000000
  u32 cmd_size;
| -
  u8 cmd_data[0];
| 0x10000000
};
|-
| 0xD0000000
| -
| 0x10000000
|}


== USB Controller 2 device ==
=== 0x11000 - SPM (Security Policy Manager)  ===
*Packet ID is mapped to SS id*SS id value range is 0x0 - 0x84


device id = 4
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Packet ID
!  Description
|-
|  0x11001
|  Request
|-
|  0x11002
|  Load Additional Policy
|}


=== MMIO regions ===
=== 0x14000 - SLL (Secure LPAR Loader) ===
*SLL opens lv2_kernel.self, parses ELF header and determines the size of initial memory region for GameOS LPAR
*SLL creates a memory region for GameOS LPAR by using syscall 0x10000.
*SLL opens /proc/partitions/&lt;LPAR id&gt;/mem file and maps it with mmap syscall into it's address space.
*Then it authenticates, decrypts and copies the SELF file of GameOS to LPAR's memory region by using SPE syscalls 0x10040 and 0x10042.
*Linux is not loaded by SLL, it's loaded in Process 9 by Linux System Manager
*GameOS file image lv2_kernel.self is stored on /dev/rflash1


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK&#95;_ShowTableBorders"  
|-
! Packet ID
! Index
! Description
! Relative Bus Start Address
|-  
! Absolute Bus Start Address
| 0x14004
! Size
| Load GOS
|-
|-  
| 0
| 0x14005
| 0x2600
| Unload GOS
| 0x24000002600
| 0x200
|-
| 1
| 0x3020000
| 0x24003020000
| 0x10000
|-
| 2
| 0x3820000
| 0x24003820000
| 0x10000
|-
| 3
| -
| -
| -
|-
| 4
| -
| -
| -
|-
| 5
| -
| -
| -
|-
| 6
| -
| -
| -
|-
| 7
| -  
| -
| -
|}
|}


=== DMA regions ===
=== 0x15000 - SPL (Secure Profile Loader) ===
*DEFAULT.SPP file is stored on /dev/rflash1


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK&#95;_ShowTableBorders"  
|-
! Packet ID
! Relative Bus Start Address
! Description
! Absolute Bus Start Address
|-
! Size
| 0x15001
|-
| Get LPAR Parameter Size/Get LPAR Parameter
| 0xC0000000
|-  
| -  
| 0x15003
| 0x10000000
| Get Contents Size/Get Contents
|-
|-
| 0xD0000000
| 0x15009
| -
| Get Component
| 0x10000000
|}
|}


== ENCDEC device ==
====  SPP File ====
*The file is encrypted but can be read by using 0x15003 service of SPL
*SPL reads SPP file, parses SPP header and checks some fields
*SPP file is verified and decrypted by SPU module spp_verifier.self that cab be executed with HV SPE calls
*Even old default.spp from PS3 Firmware 1.10 can be decrypted with spp_verifier.self from PS3 Firmware 3.41
*Header format version should be 5 or else the header check fails
*If (SPP header size&nbsp;% 256&nbsp;&#33;= 0) then header check fails
*Finally i was able to decrypt profile file from 3.41 but by using SPE HV calls only&nbsp;&#33;&#33;&#33; And Linux Manager is still there&nbsp;&#33;&#33;&#33;
*The decrypted file is a binary file
Here are the contents of DEFAULT.SPP from 3.41.
 
Here are the contents of DEFAULT.SPP 1.18 Debug from 1.18 Debug Firmware.


device id = 7
=====  SPP Header  =====
*offset 0x2 - header format version (2 bytes)
*offset 0x4 - header size (4 bytes)
*offset 0x18 - number of segments (4 bytes)


interrupt index = 5
=====  Segments  =====
*Segments follow after the header
*SPP file contains several segments.
Here is the list of profile segments from 3.41:


=== MMIO regions  ===
*SCE_CELLOS_PME
*PS3_LPAR
*PS2_LPAR
*PS2_GX_LPAR
*LINUX_LPAR
*SCE_CELLOS_SYSTEM_MGR
*SCE_CELLOS_SYSTEM_MGR_LINUX
*SCE_CELLOS_SYSTEM_MGR_PS2
*SCE_CELLOS_SYSTEM_MGR_PS2_SW
*SCE_CELLOS_SYSTEM_MGR_PS2_GX
*SCE_CELLOS_SS_SECURE_RTC
*SCE_CELLOS_SS_INDI_INFO_EID
*SCE_CELLOS_SS_INIT_LV1_ACL


{| class="wikitable FCK__ShowTableBorders"
===  0x15003 - Get Contents Size/Get Contents  ===
|-
*This service provides the contents of a segment specified by a service requester
! Index
*I have got access to this service through DM but couldn't get through access policy yet, the service returns error code 0x00000005 that means Access Violation*But i still could test with this service which segment names are valid
! Relative Bus Start Address
*I need valid laid and paid to get through it
! Absolute Bus Start Address
! Size
|-
| 0
| 0x2C00
| 0x24000002C00
| 0x200
|-
| 1
| 0x3005000
| 0x24003005000
| 0x1000
|-
| 2
| 0x3006000
| 0x24003006000
| 0x1000
|-
| 3
| -
| -
| -
|-
| 4
| -
| -
| -
|-
| 5
| -
| -
| -
|-
| 6
| -
| -
| -
|-
| 7
| -
| -
| -
|}


=== DMA regions ===
=== 0x17000 - Indi Info Manager ===


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK&#95;_ShowTableBorders"  
|-
! Packet ID
! Relative Bus Start Address
! Description
! Absolute Bus Start Address
|-  
! Size
| 0x17001
|-
| Read EID Data Size By Index/Read metldr Size
| 0x80010000
|-  
| -
| 0x17002
| 0x10000
| Read EID Data By Index/Read metldr
|-
|-  
| 0x80004000
| 0x17004
| -
| Read System Data
| 0x4000
|-  
|-
| 0x17007
| 0x80001000
| Read System Data From EEPROM
| -
|-  
| 0x1000
| 0x17013
|-
| Read eEID Size
| 0x80003000
|-  
| -
| 0x17014
| 0x1000
| Write eEID/Write metldr
|-
|-  
| 0x80008000
| 0x17015
| -
| Read cISD Size
| 0x1000
|-  
|-
| 0x17016
| 0x80009000
| Read cISD
| -
|-  
| 0x1000
| 0x17017
|-
| Write cISD
| 0x80040000
| -
| 0x10000
|-
| 0x8000A000
| -
| 0x1000
|-
| 0x90020000
| -
| 0x20000
|-
| 0xC0000000
| -
| 0x10000
|-
| 0xC0040000
| -
| 0x40000
|}
|}


== FLASH Controller device (StarShip - SS)  ==
*Indi Info Manager is accessed e.g. in syscall 868 on GameOS


device id = 9
====  0x17001 - Read EID Data Size By Index  ====
*I have got access to this service through DM and tested it
*This service is used e.g. by Update Manager, User Token Manager or Storage Manager
*The service expects 2 additional parameters, each parameter is 8 bytes
*I tested it with values: 0x0, 0x4 and 0x1000 for the 1st parameter. I extracted this values from HV Processes which use this service
*The 2nd parameter is not used in a request but in a response. It contains EID size.


interrupt index = 41
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Index
!  Size Of Data
!  Description
|-
|  0
|  0x860
|  Used e.g. by Update Manager to decrypt update packages
|-
|  4
|  0x30
|  Used e.g. by Storage Manager
|-
|  0x1000
|  0xe960
|  metldr
|}


=== MMIO regions ===
==== 0x17002 - Read EID Data By Index  ====
*I have got access to this service through DM and tested it
*This service is used e.g. by Update Manager, User Token Manager or Storage Manager
*The service expects 2 additional parameters, each parameter is 8 bytes
*The 1st parameter is same as the 1st parameter of service Read EID Data Size By Index
*The 2nd parameter is EID Data Size that is returned by the service Read EID Data Size By Index
*The returned data is some binary data.
*The data returned by the service with 1st parameter set to 0x0 or 0x4 is from file eEID stored on FLASH storage device region 0.
*The data returned by the service with 1st parameter set to 0x1000 contains string metldr.
*E.g. EID0 data is passed by Update Manager to SPU module spu_token_processor.self when Update Manager loads and executes it with syscall 0x10043.
*E.g. EID4 data is passed by Storage Manager to SPU module sb_iso_spu_module.self.


FLASH controller doesn't have MMIO regions.  
====  0x17004 - Read System Data  ====
*Reads data from cISD or cCSD files stored on /dev/rflash1.
*E.g. Gelic MAC address is stored in file cISD.


=== DMA regions ===
==== 0x17007 - Read System Data From EEPROM  ====
*Reads data from SC EEPROM
*An index is passed to the service. The index is mapped to a specific SC EEPROM offset.
Here is the list of possible EEPROM offsets from HV 3.15:


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK&#95;_ShowTableBorders"  
|-
! Index
! Relative Bus Start Address
! SC EEPROM Offset
! Absolute Bus Start Address
! Size Of Data
! Size
|-  
|-
| 0
| 0x80000000
|  0x48D20
| -  
|  6
| 0x1000
|-  
|-
| 1
| 0x80020000
|  0x48D28
| -  
|  6
| 0x20000
|-  
|-
| 2
| 0x80002000
|  0x48D30
| -  
|  6
| 0x1000
|-  
|-
| 3
| 0x90000000
|  0x48D38
| -
|  6
| 0x20000
|-  
| 4
|  0x48D00
|  4
|-  
| 5
|  0x48D04
|  4
|-  
| 6
| 0x48D08
| 4
|}
|}


== SB Bus Interrupt Handling ==
==== 0x17014 - Write eEID/Write metldr  ====
*Holy crap, it writes passed data to the region of FLASH memory where eEID or metldr data is stored&nbsp;&#33;&#33;&#33;
*And GameOS is allowed to use this service&nbsp;&#33;&#33;&#33;
*Do not experiment with this service if you don't know what it does or else your PS3 will not work anymore&nbsp;&#33;&#33;&#33;


*There is a table of interrupt handlers for SB devices
==== 0x17015 - Read cISD Size  ====
*The size of table is 64
*Returns size of data cISD that is stored on FLASH storage device region 0
*The main SB bus interrupt handler is at 0x002B9CC4 (3.15)
*The main interrupt handler reads interrupt index and dispatches interrupts


=== Interrupt Index ===
==== 0x17016 - Read cISD  ====
*Returns data cISD that is stored on FLASH storage device region 0


*The main SB bus interrupt handler reads 2 32-bit values from addresses 0x24000008100 and 0x0x24000008104
====  0x17017 - Write cISD  ====
*The interrupt index is calculated from these values
*Writes passed data to the region of FLASH memory where cISD data is stored&nbsp;&#33;&#33;&#33;


=== Interrupt Handler Table ===
=== 0x18000 - DM (Dispatcher Manager) ===
*Dispatcher Manager runs in Process 3.
*When SLL (Secure LPAR Loader) creates GamesOS LPAR and loads it, it also creates a VUART with port number 10 owned by GameOS using a service provided by Dispatcher Manager (0x18001 - Construct Service Port).
*Dispatcher Manager communicates with GameOS through this VUART. It opens the file /proc/partitions/&lt;LPAR id&gt;/vuart/10. When the file /proc/partitions/&lt;LPAR id&gt;/vuart/10 is opened by Dispatcher Manager, the Hypervisor creates a peer VUART which is connected to the GameOS's VUART 10.
*After that Dispatcher Manager reads requests from this VUART sent by GameOS and dispatches these requests to services (functions) provided by Hypervisor Processes through sockets. Through VUART and Dispatcher Manager, the GameOS LPAR has access to all services provided by Hypervisor Processes.
*However, the services provided by Hypervisor Processes are protected by Security Policy Manager (SPM). Before Dispatcher Manager routes the requests from GameOS to these services, it consults SPM (by using 0x11001 service of SPM) and checks if the GameOS has access rights to the requested service. If not then the request is not routed.
*DM overwrites the LAID sent in SS packet header with the LAID of the LPAR that sent the request. So, no matter what LAID you send in SS packet header, it will be always overwritten with the correct one by DM. That is the reason why e.g. USB Dongle Master Key cannot be decrypted by GameOS without patching DM. But with HV access rights, DM can be easily patched and access to SYSCON can be gained.
*Linux LPAR doesn't have a VUART communication link to Dispatcher Manager.
*I tested VUART 10 on GameOS with PSGroove and it's there.
*On GamesOS, _ss_multiplexer accesses DM (VUART 10)


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK&#95;_ShowTableBorders"  
|-
! Packet ID
! Interrupt
! Description
! Description  
|-  
! Address in HV
| 0x18001
|-
| Construct Service Port
| 5
|-  
| ENCDEC device
| 0x18002
| 0x00275C60 (3.15)
| Destruct Service Port
|-
| 6
| EH EPCIC internal
| 0x0023B6B0 (3.15)
|-
| 8
| Gelic device
| 0x00245330 (3.15)
|-
| 12
| ATA interrupt handler
| 0x0026B984 (3.15)
|-
| 13
| ATA interrupt handler
| 0x0026B984 (3.15)
|-
| 14
| Spider SC
| 0x0020A68C (3.15)
|-
| 29
| SBERR
| 0x0023AA50 (3.15)
|-
| 30
| SBERR
| 0x0023AA50 (3.15)
|-
| 41
| EBUS (Flash StarShip)
| 0x002814EC (3.15)
|-
| 49
| ATA media interrupt handler
| 0x00268A8C (3.15)
|-
| 50
| Flash&nbsp;?
| 0x00280B24 (3.15)
|-
| 55
| EH EPCIC SERR
| 0x0023B67C (3.15)
|}
|}


= Storage bus subsystem =
==== Dispatcher Manager Messages  ====


== vtable ==
===== Dispatcher Manager Header  =====
*Payload follows after header
*Payload is a SS packet


0x00353AC8 (3.15)
struct dispmgr_header
{
  uint32_t request_id;
  uint32_t function_id;
  uint32_t request_size;        /* payload size of request */
  uint32_t response_size;        /* payload size of response */
}


== Member variables ==
==== Packet ID - SS ID Mapping  ====
*Before DM routes a received request to a service provider (HV Process) it consults SPM
*DM sends a request to SPM
*Request contains SS ID and Subject ID (laid and paid)
*DM obtains SS ID by mapping Packet ID
Here is the mapping table i extracted from HV Process 3 where SPM and DM run:


offset 0xEE8 - table of pointers to storage device objects (7 * 8 bytes, max 7 devices)
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Packet ID
!  SS ID
|-  
|  0x2001
|  0x34
|-
|  0x2002
|  0x35
|-
|  0x2003
|  0x36
|-
|  0x2004
|  0x37
|-
|  0x2005
|  0x38
|-
|  0x2006
|  0x39
|-
|  0x200A
|  0x3D
|-
|  0x200B
|  0x3E
|-
|  0x200C
|  0x3F
|-
|  0x200D
|  0x40
|-
|  0x200E
|  0x41
|-
|  0x2012
|  0x7B
|-
|  0x2013
|  0x7C
|-
|  0x2014
|  0x7E
|-
|  0x2015
|  0x7F
|-
|  0x2016
|  0x7D
|-
|  0x2017
|  0x80
|}


== Storage device class ==
===  0x19000 - AIM ===
*Executes isolated SPU module aim_spu_module.self*EID0 data is passed to aim_spu_module.self
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Packet ID
!  Description
|-
|  0x19002
|  Get Device Type
|-
|  0x19003
|  Get Device ID
|-
|  0x19004
|  Get PS Code
|-
|  0x19005
|  Get Open PS ID
|}


=== Member variables ===
==== 0x19002 - Get Device Type ====
On my fat PS3 with HV 3.41 it returns:


offset 0x8 - device id (8 bytes)
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x85


offset 0xD50 - device id (8 bytes)
struct ss_aim_get_device_type
{
  u8 field0[16];
};


offset 0xD60 - pointer to ENCDEC SB bus device object
====  0x19003 - Get Device ID ====
struct ss_aim_get_device_id
{
  u8 field0[16];
};
====  0x19004 - Get PS Code ====
struct ss_aim_get_ps_code
{
  u8 field0[8];
};


=== Region Manager ===
==== 0x19005 - Get Open PS ID ====
struct ss_aim_get_open_ps_id
{
  u8 field0[16];
};


* Each storage device has a Region Manager (i call it like that)
===  0x24000 - USB Dongle Authenticator  ===
* Region Manager stores information about each Region of the storage device
{|  class="wikitable FCK&#95;_ShowTableBorders"
* All Regions of a Region Manager are linked together
!  Packet ID
* Free Regions of a Region Manager are linked together also
!  Description
* A Region Manager can have at most 8 Regions
|-
|  0x24001
|  Generate Challenge
|-
|  0x24002
|  Verify Response
|}


==== Region ====
==== 0x24001 - Generate Challenge  ====
*I have got access to this service through DM and tested it
*The service expects no input parameters except those in SS packet header
*It uses 0x5003 service (Generate Random Number) to generate random numbers that are used in challenge body
*The length of a challnge body is always 23 bytes, first 3 bytes are always the same: 0x2E 0x02 0x01Here are hexdumps of some challenge bodies i let 0x24001 service generate:


*Each storage device can have at most 8 regions (0-7)
2E 02 01 72 3A 0A 76 BB 81 CB 29 BC E7 B5 D6 62 7C 0E EE 23 18 A9 1D
*Each region has ACL table
2E 02 01 F0 DA 78 D4 1D CB D7 C9 C7 F0 32 F4 2E 92 39 BD 3F 32 93 AA
*HV checks region ACLs before allowing access to the region
2E 02 01 3B B2 9D FD A8 83 AF 9A C0 E9 13 BB AE D5 6C 8C 45 2E DE 13
*Each region has a start sector that is an offset from the physical first sector of the storage device and a number of sectors


*The start sector passed to lv1 storage hvcalls is '''relative''' to the start sector of the region passed to the lv1 storage hvcall
====  0x24002 - Verify Response  ====
*I have got access to this service and tested it with PSGroove
*The response body is 25 bytes large
*The first 3 bytes have to be 0x2E 0x02 0x02 or else the check fails
*The 16 bit at offset 3 is a dongle ID
*The dongle ID is checked if it's revoked or not
*When the verification succeedes then product mode is set to 1
*The service calculates USB Dongle Key from USB Dongle ID and USB Dongle Master Key by using HMAC SHA-1
*The service uses HMAC SHA-1 to calculate the correct response body from the challenge body and USB Dongle Key
*After that the service compares the calculated response body with the given one that was sent to the service
*It seems that laid and paid from SS packet header are used in decryption process


===== Region ACL =====
===== USB Dongle Master Key  =====
*USB Dongle Master Key is stored encrypted in Process 6
*The encrypted key is 64 bytes large
*The decrypted key is 20 bytes large
*The USB Dongle Master Key is decrypted first time the service 0x24002 is used
*The USB Dongle Master Key is decrypted by using the service 0x200E (Decrypt Master) of Vitual TRM Manager*The decrypted USB Dongle Master Key is stored in Process 6 in clear text (after first usage of this service)
*When decryption of USB Dongle Master Key fails then a dummy key is used
*Unfortunately, in the HV dump 3.15 the USB Dongle Master Key was not decrypted at the moment of dumping
*The first 12 bytes of decrypted USB Dongle Master Key is a magic value: _USB_DONGLE_. After these 12 bytes follows the real USB Dongle Master Key of size 20 bytes. So, if after decryption of USB Dongle Master Key, you see this magic value then the decryption was successfull.
Here is the encrypted USB Dongle Master Key from HV 3.15:


offset 0x0 - LPAR AUTH ID (8 bytes)
0x22 0xD5 0xD1 0x8C 0xFF 0xE2 0x4F 0xAC 0xEC 0x72 0xA2 0x42 0xA7 0x18 0x98 0x10
0x25 0x33 0xE0 0x96 0xF2 0xC1 0x91 0x0D 0x15 0x23 0xD3 0x07 0x74 0xE7 0x2B 0x72
0xDF 0xA6 0xDD 0xE9 0x68 0x8B 0x76 0x2A 0x6A 0x87 0x51 0x7F 0x85 0x39 0x0B 0xD4
0x20 0x3F 0x46 0x89 0x04 0x82 0xB7 0x30 0x84 0x89 0x4B 0xCC 0x9D 0xB1 0x24 0x7C


offset 0x8 - access rigths (8 bytes)
This is the decrypted dongle master key:


offset 0x10 - entry valid flag: 0 - invalid, 1 - valid (1 byte)


===== Region Access Protection =====
0x46 0xDC 0xEA 0xD3 0x17 0xFE 0x45 0xD8 0x09 0x23
0xEB 0x97 0xE4 0x95 0x64 0x10 0xD4 0xCD 0xB2 0xC2


*Before a storage region is accessed, HV checks access rights of the caller.
This is the decrypted dongle key for dongle ID&nbsp;0xAAAA&nbsp;which works up to 3.55:
*Repository node '''ss.laid''' ([[Authority ID|LPAR Authority ID]]) is evaluated for this purpose.
*If LPAR has a repository node '''ios.ata.region0.access''' (value doesn't matter) then the access rights check never fails. After System Manager sets ATA keys it removes this repository node from LPAR 1. If we add this repository node again or patch System Manager so it's not removed then we will be able to access all storage regions of all storage devices.
*'''ALL storage accesses from LPAR 1 are allowed'''
*'''If (flags &amp; 0x100000002)&nbsp;!= 0 then access rights check is skipped&nbsp;!!!'''.


  I tested on HV 3.41 with flags 0x2 and got access to regions which were denied by policy (LV1_DENIED_BY_POLICY result).
0x04 0x4E 0x61 0x1B 0xA6 0xA6 0xE3 0x9A 0x98 0xCF
0x35 0x81 0x2C 0x80 0x68 0xC7 0xFC 0x5F 0x7A 0xE8


==== Storage Device Partition Table ====
Here is the USB Dongle Master Dummy Key from HV 3.15:


* Each storage device has a Partition Table
0xD1 0xFC 0x57 0x55 0xBF 0x20 0xFA 0xB2 0xD4 0xA5 0x4A 0x0A 0x0C 0x5D 0x52 0x8E
* Partition Table contains information about each region on the storage device
0xDF 0x66 0xCD 0x74


==== Methods ====
===== USB Dongle ID Revoke List  =====
*Process 6 contains a revoke list for USB Dongle IDs
*The revoke list is 0x2000 bytes large. It's a bitmap.
*Each bit represents a USB Dongle ID. If bit is 0 then USB Dongle ID is revoked.
The following USB Dongle IDs are revoked in HV 3.15:


lv1_storage_create_region (lv1_undocumented_function_250) - 0x00301328 (3.15)
0, 2, 13, 32, 34, 176, 241


lv1_storage_delete_region (lv1_undocumented_function_251) - 0x003011E8 (3.15)
===  0x25000 - User Token Manager  ===
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Packet ID
!  Description
|-
|  0x25001
|  Encrypt User Token
|-
|  0x25002
|  Decrypt User Token
|}


lv1_storage_set_region_acl (lv1_undocumented_function_252) - 0x00300F3C (3.15)
====  User Token  ====
*Before User Token Manager encrypts a received user token it checks it's format.
*User Tokens are processed by spu_utoken_processor.self*Before User Token is processed, User Token Manager reads IDPS by sending SS requests to Indi Info Manager (packet ids 0x17001 and 0x17002). Indi Info Manager runs in HV Process 5.


lv1_storage_get_region_acl (lv1_undocumented_function_253) - 0x00301090 (3.15)
=====  User Token Format  =====
stuct user_token_attr
{
  uint32_t type;                                /* 0x00000001, value&nbsp;&#33;= 0x00000001 means attribute list ends here */
  uint32_t size;                                /* 8 + sizeof(data) */
  /* data follows here, size of data may be 0 */
}


storage_device_create_region - 0x00253988 (3.15)
struct user_token
{
  uint32_t magic;                                /* 0x73757400 = &quot;sut�&quot; */
  uint32_t format_version;                      /* 0x00000001 */
  uint64_t size;
  uint8_t idps[16];
  uint64_t expire_date;
  uint64_t capability;
  union
  {
    stuct user_token_attr attrs[0];
    uint8_t dummy[3072];
  } attrs;
  /* 0xC30 */
  uint8_t digest[20];
}


storage_device_delete_region - 0x00253BE8 (3.15)
==  LPAR Memory Management  ==
===  Memory Region class  ===
This class is the base class for different memory region types.  


storage_device_region_set_acl - 0x00252C80 (3.15)
====  vtable  ====
*0x003578B0 (3.15)  


storage_device_region_get_acl - 0x00252710 (3.15)
====  Member variables  ====
*offset 0x40 - pointer to LPAR object that owns this memory region
*offset 0x48 - type of memory region (8 bytes)  
*offset 0x50 - LPAR start address of memory region
*offset 0x58 - size of memory region (8 bytes)
*offset 0x60 - flags (8 bytes)
*offset 0xA0 - log2 of page size


storage_region_mgr_create_region - 0x0025A530 (3.15)
====  Generating New LPAR Memory Region Addresses ====
generate_new_lpar_mem_region_address(?, memory region size, log2(page size),&nbsp;?,&nbsp;?) - 002C82E8 (3.15)


storage_region_mgr_delete_region - 0x0025BA64 (3.15)
generate_new_lpar_mem_region_address - 002C6570 (3.41)


storage_region_mgr_set_acl - 0x0025A140 (3.15)
*The function returns a new LPAR memory region address.
*This method is used e.g. in all HV calls which create any kind of memory regions, e.g. lv1_allocate_memory, lv1_map_htab, lv1_undocumented_function_114, lv1_construct_logical_spe, lv1_map_device_mmio_region or syscall 0x10040.


storage_region_mgr_get_acl - 0x0025A298 (3.15)
=====  Encoding LPAR Memory Region Start Addresses and Sizes =====
*Size of LPAR memory region is encoded in the LPAR memory region start address.
*That is why e.g. the LPAR Memory Region Start Addresses of LPAR Memory Region of size 4096 byte begin with 0x300000000000, 0x300000000000 &gt;&gt; 42 = 0xC = log2(4096).
*Each LPAR has a counter (8 bytes) which is incremented by 1 every time a new LPAR Memory Region is created.
*Before incrementing, the counter is shifted left by log2(LPAR Memory Region Size) and ored with log2(LPAR Memory Region Size) &lt;&lt; 42.
LPAR Memory Region Start Address &gt;&gt; 42 = log2(LPAR Memory Region Size)
LPAR Memory Region Start Address = (log2(LPAR Memory Region Size) &lt;&lt; 42) &#124;
(counter &lt;&lt; log2(LPAR Memory Region Size))


storage_region_mgr_update_partition_table - 0x00259924 (3.15)
LPAR Memory Region Address Counter
*LPAR Memory Region Address Counter is stored at address: 0x38(LPAR ptr) + 0x9E8*LPAR1's Memory Region Address Counter is at address 0x00677A48 in HV dump 3.15
*LPAR2's Memory Region Address Counter is at address 0x007632D8 in HV dump 3.15
*LPAR1's Memory Region Address Counter is at address 0x00677A48 in HV dump 3.41
*LPAR2's Memory Region Address Counter is at address 0x00161E68 in HV dump 3.41


storage_region_acl_entry_reset - 0x0025C1A8 (3.15)
===  Physical Memory Region class  ===
This type of memory region is created e.g. in lv1_allocate_memory HV call or in syscall 0x10000.  


storage_region_acl_entry_check_laid - 0x0025C1FC (3.15)
====  vtable  ====
*0x00357D08 (3.15)  


storage_region_overlap - 0x0025C094 (3.15)
====  Member variables  ====
*offset 0xB0 - pointer to object that stores a list of addresses of physical pages owned by this memory region
*offset 0xB8 - pointer to LPAR object that owns this memory region
*offset 0xC0 - reference counter (8 bytes)  


storage_region_check_access - 0x00259EC8 (3.15)
====  Objects  ====
Here is the list of physical memory region objects i found in HV 3.15.


== Storage subsystem device  ==


device id = -1  
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Address in HV dump
!  LPAR id
!  LPAR Start Address
!  Size
!  Flags
!  log2(Page Size)
!  Physical Page Addresses
|-
|  0x006B5510
|  1
|  0x300000001000
|  0x1000
|  0x0
|  0xC
|  0x672000
|-
|  0x006B5E50
|  1
|  0x440000040000
|  0x20000
|  0x0
|  0x11
|  0x6C0000
|-
|  0x006B6980
|  1
|  0x440000060000
|  0x20000
|  0x0
|  0x11
|  0x6E0000
|-  
|  0x006B7F00
1
|  0x400000040000
|  0x10000
|  0x0
|  0x10
|  0x100000
|-
|  0x003A80F0
|  2
|  0x6C0058000000
|  0x7000000
|  0x4
|  0x18
|  0x1000000 - 0x7000000
|-
|  0x003BE800
|  2
|  0x300000047000
|  0x1000
|  0x0
|  0xC
|  0x1FA000
|-
|  0x006BDAA0
|  2
|  0x0
|  0x8000000
|  0x8
|  0x1B (single huge page)
|  0x8000000
|}


*The storage subsystem is a storage device itself.
So, Linux kernel should be located at physical address 0x8000000 and Linux syscall handler at 0x8000C00. Too bad that the HV dump is not large enough.  
*It's a pseudo device used to notify a LPAR when storage devices become e.g. ready.
*Linux implements a loop and reads from this device and process notifications (adds new devices dynamically).


=== Notification Events ===
==== GameOS Physical Memory Regions  ====
*GameOS allocates nearly all physical memory of PS3 for itself&nbsp;&#33;&#33;&#33; That is why new HV calls lv1_allocate_memory with large memory region sizes will fail.
*So when someone wants a large piece of physical memory, he can borrow it from GameOS's LPAR memory region that starts at 0x700020000000. It can be used for example to send update packages to Update Manager which are very large.
Here is the list of physical memory regions of GameOS i found in HV 3.41:


List of supported notification events:


*Notify Device Ready (0x1)  
{|  class="wikitable FCK&#95;_ShowTableBorders"
*Notify Region Probe (0x2)
!  Start Address
*Notify Region Update (0x4)
!  Size
!  Access Right
!  Max Page Size
!  Flags
!  Real Addresses
|-
|  0x0
|  0x1000000
|  0x3
|  0x18
|  0x8
|  0x1000000 - 0x1FFF000
|-
|  0x500000300000
|  0xA0000
|  0x3
|  0x10
|  0x8
|  0x380000 - 0x38F000, 0x3B0000 - 0x3BF000, 0x1E0000 - 0x1FF000, 0x3C0000 - 0x3FF000, 0xFF00000 - 0xFF1F000
|-
|  0x700020000000
|  0xE900000 (huge memory region)
|  0x3
|  0x14
|  0x0
|  0x400000 - 0x5FF000, 0x800000 - 0xFFF000, 0x2000000 - 0xFEFF000
|}


== RBD device ==
=== HTAB Memory Region class  ===
This memory region is created when a HTAB is mapped into LPAR's address space. It's created in lv1_map_htab HV call.


*On Linux, ENCDEC and RBD devices are mapped to the storage device with device id 0.
====  vtable  ====
*On GameOS, ENCDEC device has device id 0 and RBD device has device id 2.
*0x00357C98 (3.15)


device id = 0
====  Member variables  ====
offset 0xB0 - pointer to VAS object that owns the HTAB
 
====  Objects  ====
Here is the list of HTAB memory region objects i found in HV 3.15.


block size = 2048


/dev/rbd0
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Address in HV dump
!  LPAR id
!  VAS id
!  LPAR Start Address
!  Size
!  Flags
!  log2(Page Size)
|-
|  0x001FE0F0
|  2
|  3
|  0x500000C00000
|  0x100000
|  0xC000000000000000
|  0x14
|-
|  0x003BD850
|  2
|  3
|  0x500004300000
|  0x100000
|  0xC000000000000000
|  0x14
|-
|  0x003BDEA0
|  2
|  3
|  0x500004500000
|  0x100000
|  0xC000000000000000
|  0x14
|}


*The RBD storage device uses ENCDEC device.
====  GameOS HTAB  ====
*HTAB of GameOS is already mapped into address space of GameOS so that is why HV call lv1_map_htab will fail until you unmap it with lv1_unmap_htab
*Effective address of GameOS HTAB is 0x800000000F000000*Virtual address of GameOS HTAB is 0xF000000
*Size of GameOS HTAB is 0x40000*GameOS HTAB supports large pages of size 64K and 1M
*GameOS HTAB can be easily dumped by reading 0x40000 bytes at EA 0x800000000F000000


=== vtable ===
==== GameOS SLB  ====
Here is the dump of SLB entries from GameOS 3.41:


0x00354288 (3.15)
*0x8000000008000000  0x0000000000000500
*0x8000000208000000  0x0000000000020500
*0x8000000300000000  0x0000000000030510
*0x0000000000000000  0x0000000000000000
*0x0000000080000000  0x0000000000038C00
*0x00000000A0000000  0x000000000003AC00
*0x00000000C0000000  0x000000000003CC00
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x0000000000000000  0x0000000000000000
*0x8000000010057960  0x8000000000313E78
*0x8000000010057940  0x0000000000000000
*0x800000000001B698  0x0000000000000000
*0x8000000010057930  0x8000000000490708
*0x80000000002B6C68  0x80000000003DE928
*0x8000000010057EC0  0x80000000003DE920
*0x0000000000000000  0x8000000000309810
*0x80000000004B3000  0x0000000000000000
*0x8000000010057CC0  0x0000000000000000
*0x80000000004AF000  0x80000000004E1F00
*0x80000000100579C8  0x80000000100579C0
*0x80000000100579E0  0x2400002200000000
*0x80000000004CF5B0  0x8000000200012000
*0x80000000100579F8  0x80000000100579F0
*0x8000000010057A10  0x80000000004A3A00
*0x80000000004CF5B0  0x80000000004C8D00
*0x800000000001BF6C  0x80000000004CD400
*0x800000000001B698  0x80000000004C8100
*0x80000000100579D0  0x80000000004B48C0
*0x0000000000001C08  0x0000000000000000
*0x8000000010057A78  0x8000000010057A70
*0x8000000010057A90  0x0000000000000000
*0x80000000004CF90C  0x0000000000000000
*0x0000000000000000  0x8000000010057A80
*0x8000000010057A90  0x8000000000309810
*0x80000000004CF62C  0x0000000000000000
*0x8000000010057CC0  0x0000000000000000
*0x80000000004AF000  0x80000000004B48C0
*0x00004000001C0000  0x0000000000000001
*0x00000000D0000000  0x0000A8E3EE7D10DA
*0x0000000000000000  0x0000000000000000
*0x80000000004D8088  0x80000000004D9000


=== Member variables ===
=== SPE MMIO Memory Region class  ===
This type of memory region represents MMIO memory region of a SPE. It's created e.g. in lv1_construct_logical_spe or in syscall 0x10040.


offset 0x1808 - request table (0x58 * 32 bytes)
====  vtable  ====
*0x003583F8 (3.15)  


=== Regions ===
====  Member variables ====
====  Objects  ====
Here is the list of SPE memory region objects i found in HV 3.15.


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK&#95;_ShowTableBorders"  
|-
!  Address in HV dump
! Index
!  LPAR id
! Start sector
! SPE
! Number of sectors
! LPAR Start Address
|-
! Size
| 0
!  Physical Address
| 0x0
!  Flags
| 0x7FFFFFFF
!  log2(Page Size)
|-
|-  
| 1
| 0x003ABC20
| -  
| 2
| -
|  1
|-
|  0x4C0000880000
| 2  
| 0x80000
| -  
| 0x20000080000
| -
|  0xA000000000000000
|-
| 0xC
| 3  
|-  
| -  
| 0x003AAD70
| -
| 2
|-
| 2
| 4  
|  0x4C0000980000
| -  
|  0x80000
| -
|  0x20000100000
|-
|  0xA000000000000000
| 5  
|  0xC
| -
|-  
| -
| 0x003A8880
|-
| 2
| 6
| 3
| -
|  0x4C0000780000
| -
|  0x80000
|-
|  0x20000180000
| 7
|  0xA000000000000000
| -
|  0xC
| -
|-  
| 0x003B4F70
| 2
| 4
|  0x4C0000A80000
|  0x80000
|  0x20000200000
|  0xA000000000000000
|  0xC
|-  
| 0x003AB700
| 2
| 5
| 0x4C0000680000
|  0x80000
|  0x20000280000
|  0xA000000000000000
|  0xC
|-  
| 0x003B5BE0
| 2
| 6
| 0x4C0000B80000
| 0x80000
| 0x20000300000
| 0xA000000000000000
| 0xC
|}
|}


=== Supported Device Commands ===
===  SPE Shadow Registers Memory Region class  ===
This type of memory region represents shadow registers memory region of a SPE. It's created e.g. in lv1_construct_logical_spe or in syscall 0x10040.
 
====  vtable  ====
*0x00358448 (3.15)


Here is the list of commands supported by RBD storage device.  
====  Objects  ====
Here is the list of SPE Shadow Registers memory region objects i found in HV 3.15.  


*The commands can be used with HV call '''lv1_storage_send_device_command'''.
*However, before a command is executed HV does bit manipulation with it and checks it against the value of repository node '''ss.laid''' or also called '''[[Authority ID|LPAR Authority ID]]'''. If this test fails then the command is NOT executed.


{| class="wikitable FCK__ShowTableBorders"
{| class="wikitable FCK&#95;_ShowTableBorders"  
|-
!  Address in HV dump
! Command
!  LPAR id
! Description
!  SPE
|-
!  LPAR Start Address
| 0x1
!  Size
| LV1_STORAGE_SEND_ATAPI_COMMAND
!  Physical Address
|-
!  Flags
| 0x10
!  log2(Page Size)
| ATAPI Read Capacity
|-
|-
|  0x003ABDA0
| 0x11
|  2
| ATAPI Get Configuration
|  1
|-
|  0x300000012000
| 0x13
|  0x1000
| ATAPI Read TOC
|  -
|-
|  0xA000000000000000
| 0x1A
|  0xC
| ATAPI Get Event
|-
|  0x003B4290
|  2
|  2
|  0x300000014000
|  0x1000
| -
|  0xA000000000000000
|  0xC
|-
|  0x003A8A00
|  2
|  3
|  0x300000010000
|  0x1000
|  -
|  0xA000000000000000
|  0xC
|-
|  0x003B50F0
|  2
|  4
|  0x300000016000
|  0x1000
| -
| 0xA000000000000000
| 0xC
|-  
| 0x001FFC90
|  2
|  5
|  0x30000000E000
| 0x1000
| -
| 0xA000000000000000
| 0xC
|-  
| 0x003AE5B0
|  2
|  6
|  0x300000018000
| 0x1000
| -
| 0xA000000000000000
| 0xC
|}
|}


=== /dev/rbd0 ===
=== Device MMIO Memory Region class ===
This type of memory region is created when a device MMIO region is mapped into LPAR address space, e.g. in lv1_map_device_mmio_region.


*This LPAR 1 device accesses RBD storage device.
====  vtable  ====
*A write to this device sends a device command to RBD storage device.
*0x00352468 (3.15)


== ENCDEC Device ==
==== Member variables  ====
offset 0xA8 - physical address where the device MMIO region is mapped to


bus id = 4
====  Objects  ====
Here is the list of Device MMIO memory region objects i found in HV 3.15.


device id = 0


*'''ENCDEC device''' has a request table of size '''32'''.
{|  class="wikitable FCK&#95;_ShowTableBorders"
* ENCDEC device supports upto 16 keys simultaneously.
!  Address in HV dump
!  LPAR id
!  LPAR Start Address
!  Size
!  Flags
!  log2(Page Size)
!  Physical Address
!  Device
|-
|  0x001FDF00
|  2
|  0x4000001D0000
|  0x10000
|  0x8000000000000000
|  0xC
|  0x24003010000
|  USB controller
|-
|  0x003B3850
|  2
|  0x400000200000
|  0x10000
|  0x8000000000000000
|  0xC
|  0x24003020000
|  USB controller
|-
|  0x003B6E50
|  2
|  0x4000001E0000
|  0x10000
|  0x8000000000000000
|  0xC
|  0x24003810000
|  USB controller
|-
|  0x003B9950
|  2
|  0x4000001F0000
|  0x10000
|  0x8000000000000000
|  0xC
|  0x24003820000
|  USB controller
|}


=== Member variables ===
=== GPU Device Memory Region class  ===
This type of memory region is created e.g. in lv1_gpu_open, lv1_gpu_device_map and lv1_undocumented_function_114.


offset 0xDC0 - request table (0x58 * 32 bytes)
====  vtable  ====
*0x00357C48 (3.15)  


=== Methods ===
==== Member variables  ====
offset 0xA8 - physical address


encdec_device_initialize - 0x00273524 (3.15)
====  Objects  ====
Here is the list of Device GPU memory region objects i found in HV 3.15.


InitializeENCDEC - 0x00277310 (3.15)


ENCDEC_ConnectBusDriver - 0x00275A98 (3.15)
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Address in HV dump
!  LPAR id
!  LPAR Start Address
!  Size
!  Flags
!  log2(Page Size)
!  Physical Address
|-
|  0x003AF380
|  2
|  0x700190000000
|  0xFE00000
|  0x8000000000000000
|  0x14
|  0x28080000000
|-
|  0x003AF500
|  2
|  0x4000001A0000
|  0xC000
|  0x8000000000000000
|  0xC
|  0x3C0000
|-
|  0x003AF680
|  2
|  0x4800006C0000
|  0x40000
|  0x8000000000000000
|  0xC
|  0x2808FE00000
|-
|  0x003AFC30
|  2
|  0x440000380000
|  0x20000
|  0x8000000000000000
|  0xC
|  0x28000C00000
|-
|  0x003BB420
|  2
|  0x3C0000108000
|  0x8000
|  0x8000000000000000
|  0xC
|  0x28000080100
|}


encdec_interrupt_handler - 0x00275C60 (3.15)
===  Direct Map Memory Region class ===
This type of memory region is created in HV call lv1_undocumented_function_114.
lv1_undocumented_function_114 allows you to map any memory address into LPAR's memory address.


encdec_process_interrupt - 0x0027526C (3.15)
* The HV call lv1_undocumented_function_115 destroys a memory region of this type.
* HV allows GameOS to create objects of this type of size 0 only&nbsp;&#33;&#33;&#33; But it can be exploited with a dangling HTAB entry.
====  vtable  ====
*0x00357C48 (3.15)  


encdec_device_enqueue_decsec_request - 0x00273738 (3.15)
====  Member variables  ====
offset 0xA8 - physical address


encdec_device_do_request - 0x00273EA8 (3.15)
====  Exploiting HV with memory glitching and HV call lv1_undocumented_function_114 ====
Here is a short description of the method i used to exploit HV from GameOS 3.15 and 3.41.


encdec_device_do_SS_request - 0x00274940 (3.15)
* First i used the Geohot's method to create a dangling HTAB entry.
* Making memory glitch work on GameOS was the largest of my obstacles but i solved it and i'm able to create a dangling HTAB entry from GameOS within 1-3 minutes.
* Then i created many Direct Map Memory Region objects of size 0 with HV call lv1_undocumented_function_114 and checked if they are within the page to which the dangling HTAB entry points to.
* When i found one such Direct Map Memory Region object i patched the size of this object to 0x1000. Then i pointed this memory region object to the code of HV call lv1_undocumented_function_114 and patched 4 bytes in this HV call which allows me to create any Direct Map Memory Region objects without any restrictions.
* Function LPAR_construct_direct_mapping_mem_region which is used by HV call lv1_undocumented_function_114 has a parameter (register&nbsp;%r9) and when this parameter is not 0 then HV will allow you to create any Direct Map Memory Region objects without restrictions, but unfortunately the HV call lv1_undocumented_function_114 passes 0 in this parameter, so i just patched it.
* Then i mapped whole HV memory range with the patched HV call lv1_undocumented_function_114 into the address space of GameOS.
* And now you have read/write access to the whole HV.
* $ONY could fix this exploit by disallowing creating of Direct Map Memory Region objects of size 0, but i know tons of other HV C++ classes which will allow me to exploit the HV in a similar way, so it wouldn't bring $ONY anything&nbsp;:-) And they have to change member variable offsets in those objects to make sure that i cannot patch them easily&nbsp;:-)
===  Methods  ===
*LPAR_get_memory_region_by_start_address - 0x002C7C40 (3.15)
*LPAR_get_memory_region_by_address - 0x002C7DA8 (3.15)
*LPAR_mem_addr_to_phys_addr(LPAR id, LPAR address, phys_addr) - 0x002FB8F0 (3.15)
*LPAR_construct_direct_mapping_mem_region - 0x002D4D04 (3.15)


Encdec_KickDMA - 0x00277118 (3.15)
==  Network Devices  ==
===  Ethernet Gelic Device  ===
*device id = 0
*MAC Address: 00:1F:A7:C6:2A:C5
*device memory base address = 0x24003004000 (size = 0x1000)  


encdec_device_is_in_testmode - 0x002756E0 (3.15)
===  WLAN Gelic Device  ===
*device id = 0
*MAC Address: 02:1F:A7:C6:2A:C5 (locally administered)  


is_encdec_in_testmode - 0x002732D0 (3.15)
====  Net Manager  ====
*Net Manager runs in Process 9
*It sends commands to /dev/sc1 to reset WLAN Gelic device
*It opens /dev/net0, sets MAC address and writes device firmware eurus_fw.bin to WLAN device by using ioctl syscall


=== ENCDEC Device Commands ===
==== /dev/net0  ====
The device supports 3 ioctl commands:


*'''EdecKgen1''' command is used e.g. by '''Storage Manager Service 0x5003''' to generate random numbers. Storage Manager performs this command through LPAR 1 device '''/dev/encdec0'''.
*0 - 0x002AC10C (3.15)
*1 - 0x002AC250 (3.15)
*2 - EURUS_STAT 0x002AC320 (3.15)


{| class="wikitable FCK__ShowTableBorders"
====  Methods  ====
|-
*net_control_cmd_GELIC_LV1_POST_WLAN_CMD - 0x0024A55C (3.15)
! Command
*net_control_wlan_cmd_GELIC_EURUS_CMD_ASSOC - 0x00246C78 (3.15)
! Description
*net_control_wlan_cmd_GELIC_EURUS_CMD_START_SCAN - 0x00248A14 (3.15)
|-
*net_control_wlan_cmd_GELIC_EURUS_CMD_SET_WEP_CFG - 0x00249F24 (3.15)  
| 0x81
*net_control_wlan_cmd_GELIC_EURUS_CMD_SET_WPA_CFG - 0x002497B8 (3.15)  
| EdecKgen1
|-
| 0x82
| EdecKgen2
|-
| 0x83
| EdecKset/EdecKset NG
|-
| 0x84
| EdecKgenFlash
|-
| 0x85
| Encrypts/decrypts sectors (This command cannot be executed through ioctl interface !!!)
|-
| 0x86
| Encdec decsec (This command cannot be executed through ioctl interface !!!)
|-
| 0x87
| EdecSBClear
|}


==== EdecKgen1 Command (0x81) ====
== Event Notification  ==
*Event Notfication is used e.g. to notify a LPAR about some event, e.g. device interrupt or notify a LPAR about destruction of another LPAR.
*For example Process 9 is notified through Event Notification when LPAR 2 is destructed.
*During LPAR construction, Process 9 creates an Outlet object with syscall 0x1001A and then passes the outlet ID to the syscall 0x10009 that constructs the LINUX LPAR. In this way Process 9 is notified when LINUX LPAR is destructed.


*First, ENCDEC device key generator is flashed by executing the operation which is also performed during '''EdecKgenFlash''' command.
===  Outlet class  ===
*0x30 bytes of data are written to MMIO registers of ENCDEC device.
This is the base Outlet class. There are different types of Outlet and they derive from this base class.  
*0x40 bytes of data are read from MMIO registers of ENCDEC device.
*The base address of MMIO registers used in this command is '''0x24003006000'''.
*I tested this command by directly communicating with ENCDEC device from GameOS by using HV call '''lv1_storage_send_device_command''' and it returns random data.


Here is the data i sent to ENCDEC device:
====  vtable  ====
*0x00357DC0 (3.15)


<pre>
==== Member variables ====
Offset      0 1  2  3 4 5  6  7  8  9  A  B  C  D  E  F
*offset 0x30 - type (8 bytes)
*offset 0x38 - pointer to LPAR that owns this Outlet object
*offset 0x48 - outlet id (8 bytes)
*offset 0x90 - VIRQ assigned to this Outlet object (4 bytes)


00000000  00 01 00 30 72 A7 88 EC FC A4 06 71 4C B1 50 C9  ...0r§ˆìü¤.qL±PÉ
=== Event Receive Port class  ===
00000010  FB E0 06 C2 74 B5 84 C4  E6 BD 1E 55 4E 36 E9 C9  ûà.Âtµ„Äæ½.UN6éÉ
*This type of Outlet is created e.g. in lv1_construct_event_receive_port and in syscall 0x1001A.  
00000020  D6 09 BC B4 79 A6 BC DE  60 A5 B2 41 C7 15 68 68  Ö.¼´y¦¼Þ`¥²AÇ.hh
*HV calls lv1_connect_irq_plug and lv1_connect_irq_plug_ext assigns a VIRQ to Event Receive Port object.
00000030  82 1D 8F D6 00 00 00 00  00 00 00 00 00 00 00 00  ‚.Ö............
</pre>


Here is the data i received back from ENCDEC device:
====  vtable  ====
*0x00357E88


<pre>
=== VUART Outlet ===
Offset      0 1 2  3  4  5  6  7  8  9  A  B  C  D  E  F
*HV supports only one VUART Outlet per LPAR
*lv1_configure_virtual_uart_irq constructs a VUART Outlet object and passes the address of LPAR's VUART IRQ Bitmap to HV


00000000  00 02 00 00 57 CF 06 AF 53 85 1B B8 49 37 06 28  ....WÏ.¯S….¸I7.(
==== vtable ====
00000010  51 8D 4E F9 EF 76 E2 C7  17 EF 41 14 FA 6C 96 A8  QNùïvâÇ.ïA.úl–¨
*0x00357DC0
00000020  7E 41 43 96 15 9A 0D 71 A9 B6 A6 B0 F1 96 15 C5  ~AC–.š.q©¶¦°ñ–.Å
00000030  30 25 C3 8E 6F AC FB 7F  E7 2A FB E2 36 E1 85 92  0%ÃŽo¬ûç*ûâ6á…’
00000040  99 66 DB EC 00 00 00 00  00 00 00 00 00 00 00 00  ™fÛì............
</pre>


Here is another data i received back from ENCDEC device by using the same command and data:
====  VUART IRQ Bitmap  ====
*At address 0x38(LPAR ptr) + 0x158 is the VUART IRQ Bitmap owned by HV for LPAR (4 * 8 bytes = 256 bits)
*At address 0x38(LPAR ptr) + 0x150 is stored the physical address of LPAR's VUART IRQ Bitmap that was passed to lv1_configure_virtual_uart_irq*When a VUART interrupt is generated by HV then first the VUART IRQ Bitmap owned by HV is updated and then this bitmap is copied to LPAR's VUART IRQ Bitmap, so VUART IRQ Bitmap is stored twice, once in HV and once in LPAR, just like IRQ State Bitmap.
*VUART IRQ Bitmap is not allowed to cross page boundary of LPAR memory region where it is stored. HV checks it and makes sure that it doesn't happen.
*GameOS 3.41 VUART IRQ bitmap is at address 0x80000000003556E8 and of size 32 bytes (256 bits, each bit corresponds to a VUART port).
*GameOS 3.15 VUART IRQ bitmap is at address 0x8000000000354768.
==  Logical PPE  ==
*Logical PPE is used for interrupt management of LPAR.
*A Logical PPE object is created in syscall 0x10005. It' used e.g. in Process 9 during LPAR construction.
*syscall 0x10007 activates a Logical PPE object
*0x67F0(HSPRG0) - pointer to currently active Logical PPE object (in HV dump it points to Linux PPE object naturally because the dump was made on Linux, so Linux LPAR was active at that time)
*E.g. lv1_get_logical_ppe_id, lv1_start_ppe_periodic_tracer and lv1_set_ppe_periodic_tracer_frequency grab the currently active Logical PPE object


<pre>
=== vtable ===
Offset      0 1  2 3 4  5  6  7  8  9  A  B  C  D  E  F
*0x00357DF0 (3.15)


00000000  00 02 00 00 57 CF 06 AF 53 85 1B B8 49 37 06 28  ....WÏ.¯S….¸I7.(
=== Member variables ===
00000010  51 8D 4E F9 EF 76 E2 C7  17 EF 41 14 FA 6C 96 A8  QNùïvâÇ.ïA.úl–¨
offset 0x90 - pointer to an object that contains VIRQ-Outlet mapping table for thread 0
00000020  7E 41 43 96 17 08 75 F6  66 2F 32 5A 9E 3E E7 FD  ~AC–..uöf/2Zž>çý
*offset 0x98 - pointer to an object that contains VIRQ-Outlet mapping table for thread 1
00000030  16 3E 18 CA B2 5E 90 84 29 7F 98 BC 73 36 0E 7B  .>.ʲ^„)˜¼s6.{
00000040  7D EC B6 37 00 00 00 00  00 00 00 00 00 00 00 00  }ì¶7............
</pre>


==== EdecKgen2 Command (0x82) ====
=== Objects  ===
Here is the list of Logical PPE objects i found in HV 3.15.


*The base address of MMIO registers used in this command is '''0x24003006000'''.


==== EdecKset Command (0x83) ====
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Address in HV dump
!  LPAR id
!  PPE id
|-
|  0x0069C7F0
|  1
|  1
|-
|  0x007A8900
|  2
|  1
|}


==== EdecKgenFlash Command (0x84) ====
=== Virtual IRQ - Outlet Mapping  ===
*HV maintains 2 tables per PPE that map a VIRQ to an Outlet object.
*The table has 256 entries and is indexed by VIRQ.
*Each entry is a pointer to Outlet object.
*Each Logical PPE object has 2 tables, one for each thread of Cell CPU.


*The base address of MMIO registers used in this command is '''0x24003006000'''.
====  LPAR 1 PPE 1 Thread 0  ====
*The command reads 4 bytes from address '''0x240030060A0''', sets bit 1 to 1 (old value | 0x2) and writes the new value to the same address.
*0x0069C990 (3.15) - address of VIRQ-Outlet table for LPAR 1 PPE 1 Thread 0 (not empty)  


==== Encdec decsec Command (0x86) ====
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  VIRQ
!  Address of Outlet object in HV dump
!  Description
|-
|  58
|  0x00090D10
|  -
|-
|  59
|  0x006BAC50
|  -
|-
|  60
|  0x006B3ED0
|  FLASH storage device / Storage device notification for LPAR 1
|-
|  61
|  0x00697E70
|  VUART interrupts
|-
|  62
|  0x001C8F20
|  -
|}


*This command is used to decrypt/encrypt sectors.
====  LPAR 1 PPE 1 Thread 1  ====
*FLASH, HDD and RBD storage devices use this command to decrypt/encrypt sectors.
*0x0069D9B0 (3.15) - address of VIRQ-Outlet table for LPAR 1 PPE 1 Thread 1 (empty)
*This command cannot be executed through lv1_storage_send_device_command HV call, it's used by HV only internally.


==== EdecSBClear Command (0x87) ====
==== LPAR 2 PPE 1 Thread 0  ====
*0x000A06B0 (3.15) - address of VIRQ-Outlet table for LPAR 2 PPE 1 Thread 0 (not empty)


*The command expects arg2 to be 4 or else it returns with an error.
*This command is used e.g. by '''Storage Manager service 0x5002''' when ATA keys are deleted.


=== Test Mode ===
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  VIRQ
!  Address of Outlet object in HV dump
!  Description
|-
|  20
|  0x003AA210
|  -
|-
|  21
|  0x003AFEC0
|  -
|-
|  22
|  0x001FC010
|  -
|-
|  23
|  0x003A8E50
|  -
|-
|  24
|  0x001FFED0
|  SPE 0 Class 0 Interrupt
|-
|  25
|  0x003AE160
|  SPE 0 Class 1 Interrupt
|-
|  26
|  0x003AE350
|  SPE 0 Class 2 Interrupt
|-
|  27
|  0x003AB100
|  SPE 1 Class 0 Interrupt
|-
|  28
|  0x003AB2F0
|  SPE 1 Class 1 Interrupt
|-
|  29
|  0x003AB4E0
|  SPE 1 Class 2 Interrupt
|-
|  30
|  0x003AA6A0
|  SPE 2 Class 0 Interrupt
|-
|  31
|  0x003AA890
|  SPE 2 Class 1 Interrupt
|-
|  32
|  0x003AAA80
|  SPE 2 Class 2 Interrupt
|-
|  33
|  0x003B44A0
|  SPE 3 Class 0 Interrupt
|-
|  34
|  0x003B4690
|  SPE 3 Class 1 Interrupt
|-
|  35
|  0x003B4AD0
|  SPE 3 Class 2 Interrupt
|-
|  36
|  0x003B5300
|  SPE 4 Class 0 Interrupt
|-
|  37
|  0x003B54F0
|  SPE 4 Class 1 Interrupt
|-
|  38
|  0x003B56E0
|  SPE 4 Class 2 Interrupt
|-
|  39
|  0x003AE7C0
|  SPE 5 Class 0 Interrupt
|-
|  40
|  0x003AE9B0
|  SPE 5 Class 1 Interrupt
|-
|  41
|  0x003AEBA0
|  SPE 5 Class 2 Interrupt
|-
|  42
|  0x003B2040
|  Storage device notification for LPAR 2
|-
|  43
|  0x003AEE30
|  VUART interrupts
|-
|  44
|  0x001FEAA0
|  -
|-
|  45
|  0x001FEED0
|  HDD storage device
|-
|  46
|  0x003B5E20
|  -
|-
|  47
|  0x003B7040
|  -
|-
|  48
|  0x003B9B40
|  -
|-
|  49
|  0x003B3A40
|  -
|-
|  50
|  0x003BACA0
|  Gelic device
|-
|  51
|  0x003BAE10
|  UNKNOWN storage device
|-
|  52
|  0x003B8350
|  -
|}


* ENCDEC device has '''Test Mode'''
====  LPAR 2 PPE 1 Thread 1  ====
* Some HV functions test it by reading a 4 byte value from address '''0x24003005200'''. If this value is 0 then ENCDEC device is NOT in '''Test Mode'''.
*0x007A89E0 (3.15) - address of VIRQ-Outlet table for LPAR 2 PPE 1 Thread 1 (not empty)


=== ENCDEC Request ===
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  VIRQ
!  Address of Outlet object in HV dump
!  Description
|-
|  16
|  0x003B2480
|  -
|-
|  17
|  0x003B2590
|  -
|-
|  18
|  0x003B26A0
|  -
|-
|  19
|  0x003B27B0
|  -
|}


offset 0x34 - start sector (4 bytes)
===  IRQ State Bitmap  ===
*There is one IRQ State Bitmap (256 bits = 32 bytes) per thread of Logical PPE
*HSPRG0 value is per thread, so there are 2 HSPRG0 values in HV dump&nbsp;&#33;&#33;&#33;
*The IRQ State Bitmap of a thread is stored at -0x68E0(HSPRG0)
*When an Event or Interrupt happens then the bitmap at 0x68E0(HSPRG0) is updated
*The physical address of LPAR's IRQ State Bitmap of thread is stored at offset -0x68C0(HSPRG0)
*The address of LPAR's IRQ State Bitmap is passed to Hypervisor through HV call lv1_configure_irq_state_bitmap
*lv1_detect_pending_interrupts returns value of current IRQ State Bitmap.
*The IRQ State Bitmap is updated if an Outlet object is assigned to VIRQ and when Outlet generates an event
*After IRQ State Bitmap update, it's copied to LPAR's IRQ State Bitmap and a hardware interrupt is generated so that LPAR can read it's IRQ State Bitmap and handle interrupts.
*So, IRQ State Bitmap is stored twice, once in HV and once in LPAR, just like VUART IRQ Bitmap.
*GameOS IRQ state bitmap is stored at address SPRG0 + 0x1C0 and of size 64 bytes (256 bits state + 256 bits mask) per thread of Cell CPU. So there are 2 IRQ state bitmaps.


offset 0x38 - sector count (4 bytes)
*0x8941FC0 - physical address of LPAR's IRQ State Bitmap for Thread 0 of LINUX LPAR
*0x8948FC0 - physical address of LPAR's IRQ State Bitmap for Thread 1 of LINUX LPAR


offset 0x3C - sector size (4 bytes)
==  System Controller (SC or SYSCON)  ==
*Data received from SC is sent to a VUART
*lv1_get_rtc and syscall 0x10036 communicate with SC VUART 4.


offset 0x40 - key (4 bytes)
====  VUART Table  ====
*Address of SC VUART Table - 0x00610410 (3.15).
*There are 5 VUARTs for SC in HV 3.15
Here is the SC VUART table from HV 3.15:


offset 0x44 - 0 = decrypt, 1 = encrypt (4 bytes)
{|  class="wikitable FCK&#95;_ShowTableBorders"
!  Index
!  Address of VUART object in HV dump
!  Description
|-  
0
|  0x0060FD20
|  This VUART is connected with the VUART 0 (/dev/sc0) of LPAR 1
|-
|  1
|  0x0060FE20
|  This VUART is connected with the VUART 1 (/dev/sc1) of LPAR 1
|-
|  2
|  0x0060FF20
|  This VUART is not connected to some peer VUART but i guess that it should be connected to VUART 2 (/dev/sc2) of LPAR1
|-
|  3
|  0x006124E0
|  This VUART is connected with the VUART 3 (/dev/sc3) of LPAR 1
|-
4
|  0x00612DF0
| lv1_get_rtc and syscall 0x10036 communicate with this VUART.
|}


=== Encrypting and Decrypting Sectors ===
=== Interrupt Handling  ===
*spider_sc_interrupt_handler - 0x0020A68C (3.15)


*HV passes to ENCDEC device addresses of 2 buffers: '''ENCDEC User Buffer''' and '''ENCDEC Descriptor Buffer'''.
===  Methods  ===
*'''ENCDEC User Buffer''' contains the following information: '''Start Sector''', '''Sector Count''', '''Sector Size''' and '''Key'''
*sc_vuart_4_get_peer_vuart - 0x002ED384 (3.15)
*sc_send - 0x0020A908 (3.15)


==== ENCDEC User Buffer ====
===  lv1_get_rtc  ===
 
*lv1_get_rtc communicates with SC VUART 4.  
offset 0x0 - start sector (4 bytes)
*20 bytes are written to the peer VUART of SC VUART 4.  
 
*After a request is sent to SC VUART 4, lv1_get_rtc busy waits until SC VUART 4 receive data buffer is not empty.  
offset 0x4 - sector count (4 bytes)
*When SC VUART 4 receive data buffer is not empty, lv1_get_rtc reads 24 bytes from the VUART.
 
offset 0x8 - sector size (4 bytes)
 
offset 0xC - key (4 bytes)
 
== FLASH device  ==
 
device id = 1
 
*The FLASH device uses ENCDEC device.
 
=== vtable  ===
 
0x00354450 (3.15)
 
=== Member variables ===
 
offset 0x18F0 - request table (0x58 * 16 bytes)
 
=== Regions  ===
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Index
! Start sector
! Number of sectors
|-
| 0
| 0x0
| 0x8000
|-
| 1
| 0x8
| 0x77F8
|-
| 2
| 0x7900
| 0x100
|-
| 3
| 0x7A00
| 0x400
|-
| 4
| -
| -
|-
| 5
| -
| -
|-
| 6
| -
| -
|-
| 7
| -
| -
|}
 
=== Supported Device Commands  ===
 
Here is the list of commands supported by FLASH StarShip 2 storage device.
 
*The commands can be used with HV call '''lv1_storage_send_device_command'''.
*However, before a command is executed HV does bit manipulation with it and checks it against the value of repository node '''ss.laid''' or also called '''[[Authority ID|LPAR Authority ID]]'''. If this test fails then the command is NOT executed.
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Command
! Description
|-
| 0x31
| Dummy (This command does nothing, returns success immediately)
|-
| 0xA2
| -
|-
| 0xA3
| -
|-
| 0xA4
| -
|-
| 0xA6
| SS2 HW Reset
|-
| 0xAC
| -
|-
| 0xAD
| TEST
|}
 
=== /dev/eflash1 and /dev/rflash1  ===
 
*These LPAR 1 devices access region 0 of FLASH storage device.
*/dev/rflash1 is 16MB large
*There is no file system on /dev/rflash1
*There is some sort of TOC (Table Of Contents) stored in it. It contains file names, offsets and sizes.
*On /dev/rflash1 you will find '''lv0''', '''lv1ldr''', '''lv2_lernel.self''' and all the other important SELFs.
*The files are encryted of course.
 
==== Content of /dev/rflash1 (FLASH storage device region 0, size 16 MB)  ====
 
*There is a main TOC which describes different regions on '''/dev/rflash1'''
*It seems that TOC 0xC0000 and TOC 0x7C0000 contain the same files but from different SDK versions.
*TOC 0xC0000 is SDK version 3.41 and TOC 0x7C0000 is SDK version 3.30 (look at the content of files '''sdk_version''').
*I guess it's because when i bought my PS 3 Slim it had Firmware 3.30 and i updated it to 3.41 for PSGroove.
*TOC on '''/dev/rflash1''' is used by HV Processes to locate files and load them into memory, e.g. SPU modules. E.g. Process 6 loads '''spu_utoken_processor.self''' to decrypt and verify user tokens or SPL which runs in Process 5 loads '''spp_verifier.self''' from there in order to decrypt and verify profile files. And Update Manager stores e.g. there files.
 
===== TOC Entry  =====
 
A TOC entry is 0x30 bytes large.
 
offset 0x0 - relative offset from this TOC to entry data
 
offset 0x8 - entry data size
 
offset 0x10 - entry name (max 32 characters)
 
===== Main TOC  =====
 
Here is a list of regions/files stored on '''/dev/rflash1''' i found in '''HV 3.41''' and dumped with PSGroove:
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Entry Name
! TOC Offset
! Entry TOC Index
! Entry Relative Offset
! Entry Absolute Offset
! Entry Size
|-
| asecure_loader
| 0x400
| 0
| 0x400
| 0x810
| 0x2E800
|-
| eEID
| 0x400
| 1
| 0x2EC00
| 0x2F010
| 0x10000
|-
| cISD
| 0x400
| 2
| 0x3EC00
| 0x3F010
| 0x800
|-
| cCSD
| 0x400
| 3
| 0x3F400
| 0x3F810
| 0x800
|-
| trvk_prg0
| 0x400
| 4
| 0x3FC00
| 0x40010
| 0x20000
|-
| trvk_prg1
| 0x400
| 5
| 0x5FC00
| 0x60010
| 0x20000
|-
| trvk_pkg0
| 0x400
| 6
| 0x7FC00
| 0x80010
| 0x20000
|-
| trvk_pkg1
| 0x400
| 7
| 0x9FC00
| 0xA0010
| 0x20000
|-
| ros0
| 0x400
| 8
| 0xBFC00
| 0xC0010
| 0x700000
|-
| ros1
| 0x400
| 9
| 0x7BFC00
| 0x7C0010
| 0x700000
|-
| cvtrm
| 0x400
| 10
| 0xEBFC00
| 0xEC0010
| 0x40000
|}
 
===== asecure_loader Region TOC  =====
 
Here is a list of files stored on '''/dev/rflash1''' i found in '''HV 3.41''' and dumped with PSGroove:
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Entry Name
! TOC Offset
! Entry TOC Index
! Entry Relative Offset
! Entry Absolute Offset
! Entry Size
|-
| metldr
| 0x800
| 0
| 0x40
| 0x840
| 0xE920
|}
 
===== ros1 Region TOC  =====
 
Here is a list of files stored on '''/dev/rflash1''' i found in '''HV 3.41''' and dumped with PSGroove:
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Entry Name
! TOC Offset
! Entry TOC Index
! Entry Relative Offset
! Entry Absolute Offset
! Entry Size
|-
| creserved_0
| 0xC0000
| 0
| 0x460
| 0xC0470
| 0x40000
|-
| sdk_version
| 0xC0000
| 1
| 0x40460
| 0x100470
| 0x8
|-
| lv1ldr
| 0xC0000
| 2
| 0x40480
| 0x100490
| 0x1E948
|-
| lv2ldr
| 0xC0000
| 3
| 0x5EE00
| 0x11EE10
| 0x16FF0
|-
| isoldr
| 0xC0000
| 4
| 0x75E00
| 0x135E10
| 0x13074
|-
| appldr
| 0xC0000
| 5
| 0x88E80
| 0x148E90
| 0x1E254
|-
| spu_pkg_rvk_verifier.self
| 0xC0000
| 6
| 0xA70D4
| 0x1670E4
| 0xFACC
|-
| spu_token_processor.self
| 0xC0000
| 7
| 0xB6BA0
| 0x176BB0
| 0x5C94
|-
| spu_utoken_processor.self
| 0xC0000
| 8
| 0xBC834
| 0x17C844
| 0x65D0
|-
| sc_iso.self
| 0xC0000
| 9
| 0xC2E04
| 0x182E14
| 0x1532C
|-
| aim_spu_module.self
| 0xC0000
| 10
| 0xD8130
| 0x198140
| 0x4498
|-
| spp_verifier.self
| 0xC0000
| 11
| 0xDC5C8
| 0x19C5D8
| 0xD7F0
|-
| mc_iso_spu_module.self
| 0xC0000
| 12
| 0xE9DB8
| 0x1A9DC8
| 0x808C
|-
| me_iso_spu_module.self
| 0xC0000
| 13
| 0xF1E44
| 0x1B1E54
| 0x88B8
|-
| sv_iso_spu_module.self
| 0xC0000
| 14
| 0xFA6FC
| 0x1BA70C
| 0xC078
|-
| sb_iso_spu_module.self
| 0xC0000
| 15
| 0x106774
| 0x1C6784
| 0x5DB0
|-
| default.spp
| 0xC0000
| 16
| 0x10C524
| 0x1CC534
| 0x22A0
|-
| lv1.self
| 0xC0000
| 17
| 0x10E800
| 0x1CE810
| 0x127DF0
|-
| lv0
| 0xC0000
| 18
| 0x236600
| 0x2F6610
| 0x3E678
|-
| lv2_kernel.self
| 0xC0000
| 19
| 0x274C78
| 0x334C88
| 0x171B88
|-
| eurus_fw.bin
| 0xC0000
| 20
| 0x3E6800
| 0x4A6810
| 0x70F94
|-
| emer_init.self
| 0xC0000
| 21
| 0x457794
| 0x5177A4
| 0x7CDB8
|-
| hdd_copy.self
| 0xC0000
| 22
| 0x4D454C
| 0x59455C
| 0x60D68
|}
 
===== ros2 Region TOC  =====
 
Here is a list of files stored on '''/dev/rflash1''' i found in '''HV 3.41''' and dumped with PSGroove:
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Entry Name
! TOC Offset
! Entry TOC Index
! Entry Relative Offset
! Entry Absolute Offset
! Entry Size
|-
| creserved_0
| 0x7C0000
| 0
| 0x460
| 0x7C0470
| 0x40000
|-
| sdk_version
| 0x7C0000
| 1
| 0x40460
| 0x800470
| 0x8
|-
| lv1ldr
| 0x7C0000
| 2
| 0x40480
| 0x800490
| 0x1E64C
|-
| lv2ldr
| 0x7C0000
| 3
| 0x5EB00
| 0x81EB10
| 0x16E30
|-
| isoldr
| 0x7C0000
| 4
| 0x75980
| 0x835990
| 0x12EC4
|-
| appldr
| 0x7C0000
| 5
| 0x88880
| 0x848890
| 0x1DB64
|-
| spu_pkg_rvk_verifier.self
| 0x7C0000
| 6
| 0xA63E4
| 0x8663F4
| 0xFACC
|-
| spu_token_processor.self
| 0x7C0000
| 7
| 0xB5EB0
| 0x875EC0
| 0x5C94
|-
| spu_utoken_processor.self
| 0x7C0000
| 8
| 0xBBB44
| 0x87BB54
| 0x65D0
|-
| sc_iso.self
| 0x7C0000
| 9
| 0xC2114
| 0x882124
| 0x1532C
|-
| aim_spu_module.self
| 0x7C0000
| 10
| 0xD7440
| 0x897450
| 0x4498
|-
| spp_verifier.self
| 0x7C0000
| 11
| 0xDB8D8
| 0x89B8E8
| 0xD7F0
|-
| mc_iso_spu_module.self
| 0x7C0000
| 12
| 0xE90C8
| 0x8A90D8
| 0x808C
|-
| me_iso_spu_module.self
| 0x7C0000
| 13
| 0xF1154
| 0x8B1164
| 0x88B8
|-
| sv_iso_spu_module.self
| 0x7C0000
| 14
| 0xF9A0C
| 0x8B9A1C
| 0xC078
|-
| sb_iso_spu_module.self
| 0x7C0000
| 15
| 0x105A84
| 0x8C5A94
| 0x5DB0
|-
| default.spp
| 0x7C0000
| 16
| 0x10B834
| 0x8CB844
| 0x22A0
|-
| lv1.self
| 0x7C0000
| 17
| 0x10DB00
| 0x8CDB10
| 0x129040
|-
| lv0
| 0x7C0000
| 18
| 0x236B80
| 0x9F6B90
| 0x3E570
|-
| lv2_kernel.self
| 0x7C0000
| 19
| 0x2750F0
| 0xA35100
| 0x1712D0
|-
| eurus_fw.bin
| 0x7C0000
| 20
| 0x3E63C0
| 0xBA63D0
| 0x70F94
|-
| emer_init.self
| 0x7C0000
| 21
| 0x457354
| 0xC17364
| 0x7FBB8
|-
| hdd_copy.self
| 0x7C0000
| 22
| 0x4D6F0C
| 0xC96F1C
| 0x61518
|}
 
=== Methods ===
 
initialize_starship - 0x0028298C (3.15)
 
SSOperation - 0x0027BFB0 (3.15)
 
SSTransfer - 0x0027BE68 (3.15)
 
FLASH_Memory_SS2_on_complete - 0x00278E48 (3.15)
 
_FLASH_read_data - 0x0022D89C (3.15)
 
_FLASH_write_data - 0x0022D8C8 (3.15)
 
FLASH_SS2_HW_Reset - 0x0027BD1C (3.15)
 
== HDD device ==
 
device id = 2
 
block size = 512
 
*The HDD device uses ENCDEC device.
 
=== vtable  ===
 
0x00353F48 (3.15)
 
=== Member variables  ===
 
offset 0x1590 - LBA48 capability flag (4 bytes)
 
offset 0x17E8 - request table (0x58 * 16 bytes)
 
offset 0x1DB8 - request timer active flag (1 byte)
 
=== Regions  ===
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Index
! Start sector
! Number of sectors
|-
| 0
| 0x0
| 0x950F8B0
|-
| 1
| 0x8
| 0x80000
|-
| 2
| 0x80018
| 0x7C8F898
|-
| 3
| 0x7D0F8B8
| 0x3FFFF8
|-
| 4
| 0x810F8B8
| 0x13FFFF8
|-
| 5
| -
| -
|-
| 6
| -
| -
|-
| 7
| -
| -
|}
 
=== Supported Device Commands  ===
 
Here is the list of commands supported by HDD storage device.
 
*The commands can be used with HV call '''lv1_storage_send_device_command'''.
*However, before a command is executed HV does bit manipulation with it and checks it against the value of repository node '''ss.laid''' or also called '''[[Authority ID|LPAR Authority ID]]'''. If this test fails then the command is NOT executed.
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Command
! Description
|-
| 0x2
| LV1_STORAGE_SEND_ATA_COMMAND
|-
| 0x10
| -
|-
| 0x1B
| ATA Set UltraDMA Mode
|-
| 0x1C
| ATA Set Features PIO Flow Control Transfer Mode
|-
| 0x21
| -
|-
| 0x22
| ATA Identify Device
|-
| 0x23
| LV1_STORAGE_ATA_HDDOUT (ATA Flush Cache Ext)
|-
| 0x26
| ATA Read Alternative Status
|-
| 0x27
| ATA Read Error
|-
| 0x28
| -
|-
| 0x31
| ATA Flush Cache/ATA Flush Cache Ext
|-
| 0x32
| ATA Standby Immediate
|-
| 0x33
| -
|}
 
== Virtual FLASH device (VFLASH) ==
 
device id = 3 (on Linux)/ 4 (on GameOS)
 
block size = 512
 
*It's a pseudo device.
*'''This storage device redirects all requests to the region 1 of HDD storage device&nbsp;!!!'''
 
=== vtable  ===
 
0x00353D88 (3.15)
 
=== Member variables  ===
 
offset 0xD60 - pointer to a storage device that all requests are redirected to
 
offset 0xD68 - region ID of the storage device that all requests are redirected to
 
=== Regions  ===
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Index
! Start sector
! Number of sectors
|-
| 0
| 0x0
| 0x80000
|-
| 1
| 0x8
| 0x75F8
|-
| 2
| 0x7800
| 0x63E00
|-
| 3
| 0x6B600
| 0x8000
|-
| 4
| 0x73600
| 0x400
|-
| 5
| 0x73A00
| 0x2000
|-
| 6
| 0x77C00
| 0x200
|-
| 7
| -
| -
|}
 
=== Supported Device Commands  ===
 
Here is the list of commands supported by VFLASH storage device.
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Index
! Start sector
! Number of sectors
|-
| 0x31
| ATA Flush Cache/ATA Flush Cache Ext
| -
|}
 
=== /dev/rflash1_1x and /dev/rflash_1xp  ===
 
*These LPAR 1 devices access region 5 of UNKNOWN storage device.
*In region 5 of UNKNOWN storage device is e.g. LINUX image stored.
 
=== GameOS's dev_flash ===
 
*dev_flash has '''FAT16''' file system.
*Accesses to GameOS's dev_flash are routed to '''UNKNOWN storage device region 2'''
*To decrypt sectors read from this region use as '''flags 0x4''' !!! Without using '''flags 0x4''' the sectors will be encrypted.
*The sectors are decrypted not by GameOS but by ENCDEC device.
 
Here is a snippet from raw '''dev_flash''' dump made with HV call '''lv1_storage_read (flags 0x4)''' from GameOS:
 
<pre>
Offset      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
 
00000000  E9 00 00 20 20 20 20 20  20 20 20 00 02 10 10 00  é..        .....
00000010  02 00 02 00 00 F8 70 00  00 00 00 00 00 00 00 00  .....øp.........
00000020  00 3E 06 00 00 00 29 00  00 00 00 4E 4F 20 4E 41  .>....)....NO NA
00000030  4D 45 20 20 20 20 46 41  54 31 36 20 20 20 00 00  ME    FAT16  ..
00000040  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000050  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000060  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000070  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000080  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000090  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000000A0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000000B0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000000C0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000000D0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000000E0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000000F0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000100  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000110  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000120  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000130  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000140  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000150  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000160  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000170  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000180  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00000190  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000001A0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000001B0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000001C0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000001D0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000001E0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000001F0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 55 AA  ..............Uª
</pre>
 
 
=== Methods ===
 
initialize_virtual_flash - 0x00282954 (3.15)
 
== Enqueueing and Scheduling of Storage Requests ==
 
*HV uses a simple '''FIFO''' scheduling algorithm for Storage Requests and a request timeout.
*Each storage device has a table of size '''16''' to store incomming and pending Storage Requests
*ENCDEC storage device has a table of size '''32''' to store incomming and pending Storage Requests
*When a new Storage Request is submitted e.g. by HV call '''lv1_storage_read''' or '''lv1_storage_write''', the table is scanned for a free slot, if there are no pending Storage Requests then the Storage Request is executed immediately
*When a Storage Request is completed, the finished Storage Reuqest is passed to function '''storage_device_async_request_complete''' and the table of Storage Requests is scanned again for the next pending Storage Request which will be executed
* There are 2 types of Storage Requests: '''Read/Write (1)''' and '''Device Command (2)'''.
* Read and Write Storage Requests use the same HV function of a Storage Device to enqueue the request. Before Write Storage Request is inserted into the Request Table of a Storage Device, the '''flags''' parameter passed e.g. in '''lv1_storage_read''' or '''lv1_storage_write''' is '''ored''' with '''0x8'''. That is how HV differentiates between Read and Write Storage Requests.
 
=== Storage Device Request Table ===
 
*Each request slot is of size '''0x58'''
 
==== Request Slot ====
 
offset 0x0 - state: 1 - free, 2 - ? (4 bytes)
 
offset 0x4 - type: 1 - Read/Write, 2 - Command, 0x86 - ENCDEC command (4 bytes)
 
offset 0x10 - request tag (8 bytes)
 
offset 0x20 - start sector (8 bytes)
 
offset 0x28 - sector count (4 bytes)
 
==== ENCDEC Storage Device ====
 
*Request Table begins at '''offset 0xDC0''' of ENCDEC storage device.
 
==== RBD Storage Device ====
 
*Request Table begins at '''offset 0x1808''' of RBD storage device.
 
==== FLASH Storage Device ====
 
*Request Table begins at '''offset 0x18F0''' of FLASH storage device.
 
==== HDD Storage Device ====
 
*Request Table begins at '''offset 0x17E8''' of HDD storage device.
 
=== Methods ===
 
storage_device_HDD_enqueue_request - 0x0026E21C (3.15)
 
storage_device_HDD_do_device_command - 0x0026CED0 (3.15)
 
storage_device_HDD_do_request - 0x0026DED8 (3.15)
 
storage_device_HDD_request_complete - 0x0026E57C (3.15)
 
storage_device_FLASH_enqueue_request - 0x0027A518 (3.15)
 
storage_device_FLASH_do_request - 0x00278D1C (3.15)
 
storage_device_FLASH_do_device_command - 0x00279250 (3.15)
 
FLASH_Memory_SS2_on_complete - 0x00278E48 (3.15)
 
storage_device_async_request_complete - 0x00255184 (3.15)
 
storage_device_TransLparAddrToPhysAddr - 0x002533B4 (3.15)
 
storage_device_add_async_request_locked - 0x002527B8 (3.15)
 
storage_device_RBD_enqueue_request - 0x002723F0 (3.15)
 
storage_device_RBD_do_request - 0x0025EF70 (3.15)
 
storage_device_RBD_do_next_request - 0x00270994 (3.15)
 
storage_device_RBD_request_complete - 0x00271FD4 (3.15)
 
storage_device_rbd_do_request - 0x0025EE94 (3.41)
 
storage_device_rbd_do_device_command - 0x0027061C (3.41)
 
== Encryption and Decryption of Storage Devices ==
 
=== HDD ===
 
*'''ENCDEC peripheral device''' is used for HDD encryption/decryption
*Write request is first passed to ENCDEC device for encryption. When ENCDEC device is done, it calls a callback and passes the encrypted data to the callback. The callback writes the encrypted data with '''ATA WriteDMAExt''' command to HDD.
*When a storage device request is processed by HV, Storage Subsystem checks if cryptography is enabled for the storage device.
*HV checks 1 byte of data owned by the storage device and when the value of this flag is '''not 0''' then it uses encryption/decryption.
*'''By setting this flag to 0 at runtime, encryption/decryption of storage devices can be disabled at runtime'''.
*'''We could patch lv1.self so that encryption/decryption of storage devices is disabled permanently'''.
*HDD sectors can be both decrypted and encrypted with HV calls
 
==== UFS2 ====
 
*'''Superblock''' starts at '''sector 0x80'''.
*At the end of the superblock structure you will find '''UFS2 signature 0x19540119'''.
 
Here is the decrypted '''superblock''' of UFS2 filesystem:
 
<pre>
Offset      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F
 
00010000  00 00 00 00 00 00 00 00  00 00 00 28 00 00 00 30  ...........(...0
00010010  00 00 00 38 00 00 0B B8  00 00 00 00 00 00 00 00  ...8...¸........
00010020  00 00 00 00 00 00 00 00  00 00 78 10 00 00 01 5C  ..........x....\
00010030  00 00 40 00 00 00 08 00  00 00 00 08 00 00 00 08  ..@.............
00010040  00 00 00 00 00 00 00 00  FF FF C0 00 FF FF F8 00  ........ÿÿÀ.ÿÿø.
00010050  00 00 00 0E 00 00 00 0B  00 00 00 08 00 00 08 00  ................
00010060  00 00 00 03 00 00 00 02  00 00 08 00 00 00 00 00  ................
00010070  00 00 00 00 00 00 08 00  00 00 00 40 00 00 00 00  ...........@....
00010080  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010090  00 00 00 00 F5 35 BD 07  00 00 00 00 00 00 18 00  ....õ5½.........
000100A0  00 00 40 00 00 00 00 00  00 00 00 00 00 00 00 00  ..@.............
000100B0  00 00 00 00 00 00 00 00  00 00 5C 00 00 01 6F 70  ..........\...op
000100C0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000100D0  00 00 00 80 2F 63 65 6C  6C 5F 6D 77 5F 63 66 73  ...€/cell_mw_cfs
000100E0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000100F0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010100  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010110  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010120  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010130  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010140  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010150  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010160  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010170  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010180  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010190  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000101A0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000101B0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000101C0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000101D0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000101E0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000101F0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010200  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010210  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010220  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010230  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010240  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010250  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010260  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010270  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010280  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010290  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000102A0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000102B0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000102C0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000102D0  00 00 00 00 00 00 00 7C  00 00 00 00 00 00 00 00  .......|........
000102E0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000102F0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010300  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010310  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010320  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010330  00 00 00 00 00 00 00 00  80 00 00 00 00 55 FD 70  ........€....Uýp
00010340  80 00 00 00 00 55 E0 00  80 00 00 00 00 55 F8 00  €....Uà.€....Uø.
00010350  00 00 00 00 00 00 00 00  00 00 00 00 00 00 40 00  ..............@.
00010360  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010370  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010380  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010390  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000103A0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000103B0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000103C0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000103D0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000103E0  00 00 00 00 00 00 00 00  00 00 00 00 00 01 00 00  ................
000103F0  00 00 00 00 00 00 00 3C  00 00 00 00 00 3B D3 23  .......<.....;Ó#
00010400  00 00 00 00 00 7D 0F 82  00 00 00 00 00 00 00 9F  .....}.‚.......Ÿ
00010410  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010420  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010430  00 00 00 00 49 B0 5E 3B  00 00 00 00 01 F2 3E 26  ....I°^;.....ò>&
00010440  00 00 00 00 01 E2 86 3B  00 00 00 00 00 00 0B B8  .....â†;.......¸
00010450  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010460  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010470  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010480  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010490  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000104A0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 40 00  ..............@.
000104B0  00 00 00 40 00 00 00 00  00 00 00 00 00 00 00 00  ...@............
000104C0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000104D0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000104E0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
000104F0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010500  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010510  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................
00010520  00 00 00 03 00 00 00 08  00 00 00 78 00 00 00 00  ...........x....
00010530  00 00 80 10 02 02 FF FF  00 00 00 00 00 00 3F FF  ..€...ÿÿ......?ÿ
00010540  00 00 00 00 00 00 07 FF  00 00 00 00 00 00 00 00  .......ÿ........
00010550  00 00 00 00 00 00 00 00  00 00 00 00 19 54 01 19  .............T..
</pre>
 
Other examples:<br />
http://pastebin.com/3L241qu3
http://pastebin.com/WJv40nUQ
http://pastie.org/1529241
http://pastie.org/1588747
 
=== FLASH ===
 
=== RBD ===
 
== SATA/ATA/ATAPI ==
 
=== ATA Interrupt Handler  ===
 
0x0026B984 (3.15)
 
=== ATA_SetDMA  ===
 
0x00268ADC (3.15)
 
=== ATA_make_PRD_table  ===
 
0x00267DB4 (3.15)
 
This function initializes a PRD (Physical Region Descriptor) table.
 
=== ClearPATACInterrupt  ===
 
0x00267CAC (3.15)
 
=== EnablePATACInterrupt  ===
 
0x00267D44 (3.15)
 
=== DisablePATACInterrupt  ===
 
0x00267AF0 (3.15)
 
=== ATA_read_AltStatus_reg  ===
 
0x00267C40 (3.15)
 
This function reads the ATA Alternate Status Register and returns it's value.
 
=== ATA_write_DATA_reg  ===
 
0x00268A10 (3.15)
 
This function writes a 16-bit value to the ATA Data Register.
 
=== ATA_read_DATA_reg  ===
 
0x0026887C (3.15)
 
=== ATA_write_DATA  ===
 
0x0026635C (3.15)
 
This function writes several 16-bit values to the ATA Data register.
 
=== ATA_write_CMD_reg  ===
 
0x002688A0 (3.15)
 
=== ATA_read_Error_reg  ===
 
0x00267BD4 (3.15)
 
=== ATA_write_Features_reg  ===
 
0x002689F0 (3.15)
 
=== ATA_write_DevCtrl_reg  ===
 
0x00267BB4 (3.15)
 
=== ATA_write_TaskFile_regs  ===
 
0x00266BC8 (3.15) 0x002665A0 (3.15)
 
=== ATA_send_ATAPI_cmd  ===
 
0x002655F4 (3.15)
 
=== ATA_send_cmd  ===
 
0x0026580C (3.15)
 
=== ATA_send_ReadSectors_cmd  ===
 
This function uses LBA28.
 
0x0025D2B4 (3.15)
 
=== ATA_send_WriteSectors_cmd  ===
 
This function uses LBA28.
 
0x0025CEF4 (3.15)
 
=== ATA_send_ReadDMA_cmd  ===
 
This function uses LBA28.
 
0x0025D380 (3.15)
 
=== ATA_send_WriteDMA_cmd  ===
 
This function uses LBA28.
 
0x0025CFB8 (3.15)
 
=== ATA_send_ReadDMAExt_cmd  ===
 
This function uses LBA48.
 
0x0025D74C (3.15)
 
=== ATA_send_WriteDMAExt_cmd  ===
 
This function uses LBA48.
 
0x0025D664 (3.15)
 
=== ATA_send_IdentifyDevice_cmd  ===
 
0x0025D4D8 (3.15)
 
=== ATA_send_IdentifyPacketDevice_cmd  ===
 
0x0025D448 (3.15)
 
=== ATA_send_FlushCache_cmd  ===
 
0x0025D5E8 (3.15)
 
=== ATA_send_FlushCacheExt_cmd  ===
 
0x0025D568 (3.15)
 
=== ATA_send_StandbyImmediate_cmd  ===
 
0x0025D07C (3.15)
 
=== ATA_send_SetFeatures_cmd  ===
 
0x0025D208 (3.15)
 
=== ATA_send_SMARTEnable_cmd  ===
 
0x0025D0F8 (3.15)
 
=== ATA_send_SMARTSaveAttributeValue_cmd  ===
 
0x0025D180 (3.15)
 
=== ATA_SetUDMAMode  ===
 
0x00260EE8 (3.15)
 
==== Parameters  ====
 
r5 - UltraDMA mode (0-5)
 
== Booting a Bootloader from VFLASH ==
 
Coming soon !!!
 
= High precision timers  =
 
These timers are used e.g. in SATA/ATA/ATAPI driver.
 
== timer_add  ==
 
0x002C3F2C (3.15)
 
== timer_del  ==
 
0x002C41AC (3.15)
 
== timer_run_expired  ==
 
This function is called from HDEC interrupt handler.
 
0x002C4020 (3.15)
 
== timer_set_HDEC  ==
 
0x002BCF80 (3.15)
 
= SPE  =
 
There are 3 SPE classes.
 
The HV call '''lv1_construct_logical_spe''' can create LogicalSPE, SPEType1 and SPEType2 objects.
 
The '''syscall 0x10040''' creates only SPEType1 objects.
 
The SPEType1 and SPEType2 objects cannot be created when isolation mode is disabled. The right most bit of repository node '''sys.lv1.iso_enbl''' is checked and when it's not 1 then the SPEType1 and SPEType2 objects cannot be created. In LPAR 1, this check succeedes always. Only in LPARs different from 1, the repository node '''sys.lv1.iso_enbl''' is checked.
 
== LogicalSPE  ==
 
SPE type = 0
 
Objects of this class are used e.g. on Linux.
 
=== vtable  ===
 
0x00358360 (3.15)
 
offset 0x20 - pointer to TOC entry of interrupt handler for SPE
 
=== Member variables  ===
 
offset 0x38 - pointer to LPAR obj that owns this SPE obj
 
offset 0x78 - table of pointers to Outlet objects (3 * 8 bytes, one for each Class 0-2)
 
offset 0xB0 - pointer to VAS object
 
offset 0xC8 - pointer to Logical PPE object
 
offset 0xE0 - SPE id
 
offset 0x1A0 - pointer to MMIO Memory Region object
 
offset 0x1A8 - pointer to Shadow Registers Memory Region object
 
=== Objects  ===
 
Here is the list of logical SPE objects i found in HV 3.15:
 
*0x003A82E0 - SPE id 0
*0x003A8660 - SPE id 1
*0x003ABA00 - SPE id 2
*0x003B4010 - SPE id 3
*0x003B4D60 - SPE id 4
*0x003B5970 - SPE id 5
 
== SPEType1  ==
 
SPE type = 1
 
=== vtable  ===
 
0x00359750
 
=== Member Variables  ===
 
offset 0x198 - pointer to MMIO Memory Region object
 
offset 0x1A0 - pointer to Shadow Registers Memory Region object
 
== SPEType2  ==
 
SPE type = 2
 
=== vtable  ===
 
0x00359790
 
== SPE Register Shadow Area  ==
 
*HV createas a SPE Register Shadow Area for each contstructed SPE.
*The area is 1 4Kb page of physical memory.
*When SPE state changes then HV updates data in this area.
*The value of '''shadow_addr''' that is returned by '''lv1_construct_logical_spe''' is a LPAR start address of this area and it cannot be accessed until it's mapped in the HTAB.
*The SPE Register Shadow Area may be mapped only with read-only page protection or else HV call '''lv1_insert_htab_entry''' fails. I tested it with PSGroove and could map the whole memory range and read it after i constructed SPE of type 1 with '''lv1_construct_logical_spe'''.
*The shadow_addr is also returned by '''syscall_10040''' (that creates SPE of type 1) but it returns already mapped Process address so HV Processes do not have to map it in HTAB.
*When an isoated SPU is done, HV Processes checks the value at offset 0x30 to determine if the SPU execution was successfull or not.
*GameOS checks also the value at offset 0x30 in the SPE Shadow Area.
*When GameOS creates SPE of type 1 then it maps only SPE Register Shadow Area into it's address space.
 
=== SPE Register Shadow Area Offsets  ===
 
0x30 - SPU_Status register value (4 bytes)
 
0xF10 -&nbsp;?
 
0xF18 -&nbsp;?
 
==== Stop Code  ====
 
*The high-order 16 bit of SPU_Status register value is a Stop Code.
 
Here is the list of Stop Codes i extracted from HV Processes which read the value at offset 0x30 when SPU is done:
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Value
! Description
|-
| 0xA
| Success
|-
| 0xC
| Access Violation (LPAR auth id error)
|-
| 0xE
| &nbsp;?
|-
| 0xF
| Revoked
|-
| 0x12
| Invalid Parameter
|-
| 0x13
| &nbsp;?
|-
| 0x17
| Invalid Parameter
|-
| 0x25
| &nbsp;?
|}
 
== SPU_send_MFC_cmd  ==
 
0x002B09B0 (3.15)
 
This function programs a MFC.
 
== SPU_write_MFC_cmd_status_reg  ==
 
0x002AEE70 (3.15)
 
== SPU_write_Sig_Notify1_reg  ==
 
0x002AEF4C (3.15)
 
== SPU_write_Sig_Notify2_reg  ==
 
0x002AEF30 (3.15)
 
== SPU_write_Sig_Notify1_and_Notify2  ==
 
0x002B0A78 (3.15)
 
== SPU_enable_iso_load_request  ==
 
0x002AEDE0 (3.15)
 
== SPU_iso_load_request  ==
 
0x002AEED0 (3.15)
 
== SPU_enable_runcntl  ==
 
0x002AEB24 (3.15)
 
== SPU_stop_request  ==
 
0x002AEEF0 (3.15)
 
== SPU_run_request  ==
 
0x002AEF10 (3.15)
 
== SPU_read_status_reg  ==
 
0x002AE978 (3.15)
 
== SPU_read_Mbox_Stat_reg  ==
 
0x002AE998 (3.15)
 
== lv1_undocumented_function_62  ==
 
Updates SLB entry.
 
=== Parameters  ===
 
%r3 - SPE id
 
%r4 -&nbsp;? (valid values: 0 - 3)
 
%r5 - SLB entry index (valid values: 0 - 7)
 
%r6 - ESID
 
%r7 - VSID
 
== spe_type1_interrupt_handler  ==
 
0x0030E238 (3.15)
 
== spe_type2_interrupt_handler  ==
 
0x003103F8 (3.15)
 
== spe_type3_interrupt_handler  ==
 
0x002F36F4 (3.15)
 
== Isolation  ==
 
=== Loaders Table  ===
 
*'''All the binary files needed for isolation and decryption are already stored in HV memory&nbsp;!!!'''
*They are probably loaded during HV initialization from FLASH.
*The table has 9 entries.
*Each entry is 16 bytes large.
 
0x00010100 (3.15)
 
===== Loaders Table Entry  =====
 
offset 0x0 - pointer to data in memory
 
offset 0x8 - size of data
 
Here are the contents of the Loaders Table from HV 3.15:
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Index
! Name
! Address of Data in HV Dump
! Size of Data
! Entry Id
|-
| 0
| lv1ldr
| 0x0C150000
| 0x1E5CC
| 0x01
|-
| 1
| metldr
| 0x00011000
| 0xE8D0
| 0x00
|-
| 2
| lv2ldr
| 0x00020000
| 0x16DA0
| 0x02
|-
| 3
| isoldr
| 0x00055000
| 0x12E44
| 0x04
|-
| 4
| appldr
| 0x00037000
| 0x1DAE4
| 0x03
|-
| 5
| EID0
| 0x00068000
| 0x860
| 0x0C
|-
| 6
| QA Flag
| 0x00069010
| 0x8
| 0x0F
|-
| 7
| QA Flag Token
| 0x00069020
| 0x50
| 0x10
|-
| 8
| Trace Level
| 0x00069070
| 0x8
| 0x11
|}
 
==== Methods  ====
 
get_iso_loaders_tab - 0x002B0B70 (3.15)
 
iso_loaders_tab_get_entry - 0x002B0CB8 (3.15)
 
=== metldr  ===
 
==== Loading metldr  ====
 
*Physical/Virtual memory address of an isolation module that should be loaded by metldr is written into SPU register '''SPU_In_Mbox'''. The SPU register '''SPU_In_Mbox''' is 32bit, so 64bit memory address is written in 2 steps.
*MFC relocation is turned off by clearing '''R-bit''' in SPU register '''MFC_SR1'''. By doing this, HV enables real address mode for MFC of SPU.
*On GameOS, it also works with relocation on. You just have to initialize SLB of SPU and insert valid SLB entries.
*Physical/Virtual memory address of '''metldr''' is written to SPU registers '''Sig_Notify1''' and '''Sig_Notify2'''
*Isolation load request is enabled by writing SPU register '''SPU_PrivCntl'''
*Isolation load request is made by writing value '''0x3''' into SPU register '''SPU_RunCntl'''
 
==== Methods  ====
 
SPE_load_request_metldr - 0x002B00A4 (3.15)
 
=== lv2ldr  ===
 
*'''lv2ldr''' is used to decrypt '''lv2_kernel.self'''
*syscalls '''0x10042''' and '''0x1004A''' use '''lv2ldr'''
*syscall '''0x10042''' is used by HV Process 3 during LV2 LPAR construction
*syscall '''0x1004A''' uses different parameters as syscall '''0x10042'''
 
==== Methods  ====
 
SPE_load_request_lv2ldr_1 - 0x002AE82C (3.15)
 
SPE_load_request_lv2ldr_2 - 0x002AE8D8 (3.15)
 
==== Loading lv2ldr  ====
 
*64 bit memory address of '''lv2ldr''' is written into 32 bit SPU register '''SPU_In_Mbox'''
*'''metldr''' is loaded
 
=== isoldr  ===
 
*'''isoldr''' is used for executing isolated SPUs
*syscall '''0x10043''' and HV call '''lv1_undocumented_function_209''' use '''isoldr''' to execute isolated SPUs
*'''EID0 data''' is transferred to '''Local Storage Address 0x3E400''' by MFC
*'''Revoke List For Program''' is transferred to '''Local Storage Address 0x3F000''' by MFC
 
==== Revoke List For Programs  ====
 
0x00361980 (3.15)
 
==== Methods  ====
 
SPE_load_request_isoldr - 0x002B0394
 
==== Loading isoldr  ====
 
*64 bit memory address of '''isoldr''' is written into 32 bit SPU register '''SPU_In_Mbox'''
*'''metldr''' is loaded
 
=== appldr  ===
 
*'''appldr''' is used for decryption of SELFs or EDATs
*HV call '''lv1_authenticate_program_segment''' loads '''appldr'''
 
==== Methods  ====
 
SPE_load_request_appldr - 0x002AE900
 
==== Loading appldr  ====
 
*64 bit memory address of '''appldr''' is written into 32 bit SPU register '''SPU_In_Mbox'''
*'''metldr''' is loaded
 
==== Decrypting SELFs with appldr and lv1_authenticate_program_segment  ====
 
*'''lv1_authenticate_program_segment''' loads and prepares '''appldr''' for SELF decryption.
*When '''appldr''' is ready to decrypt data, it sends a message via mailbox.
*The address and the size of the encrypted data is passed to '''appldr''' via a shared memory.
 
= Socket  =
 
The socket supports only one address family '''0x1F''', one socket type '''0''' and one protocol '''0'''.
 
== Socket address  ==
 
Socket address is called port ID. Valid port IDs are 0-63. Port ID 0 is reserved.
 
== Socket state  ==
 
2 - LISTEN
 
== Socket table  ==
 
The socket table contains 64 entries, one for each port ID. Each entry is 16 bytes large.
 
The socket table is at 0x0035F6E8 (3.15).
 
Here is the list of opened sockets i found in HV 3.15:
 
*0x00091FE0 (port ID 0x23, accepts connections)
*0x00127850 (port ID 0x24, accepts connections)
*0x0012F810 (port ID 0x25, accepts connections)
 
=== Socket table entry  ===
 
offset 0x0 - pointer to Socket obj
 
offset 0x8 - socket accepts connections or not (0 - does not accept, 1 - accepts, 1 byte)
 
== vtable  ==
 
0x00355DB0 (3.15)
 
offset 0xB0 - bind
 
offset 0xB8 - listen
 
offset 0xC8 - connect
 
== Member variables  ==
 
offset 0x360 - socket state (4 bytes)
 
offset 0x368 - port ID (8 bytes)
 
offset 0x370 - max backlog queue size (8 bytes)
 
= Virtual Address Space  =
 
== VAS  ==
 
=== vtable  ===
 
0x00357958 (3.15)
 
=== Member variables  ===
 
offset 0x18 - pointer to LPAR that owns this VAS object
 
offset 0x48 - VAS id (8 bytes)
 
offset 0x70 - number of page sizes (4 bytes)
 
offset 0x74 - log2 of HTAB size
 
offset 0x78 - pointer to HTAB object
 
=== Objects  ===
 
Here is the list of the VAS objects i found in HV dump 3.15:
 
*0x001C8050 (VAS id 2, LPAR 1)
*0x003B4910 (VAS id 3, LPAR 2)
*0x003BDB50 (VAS id 48, LPAR 2)
 
== HTAB  ==
 
0x38(-0x69A8(HSPRG0)) - pointer to the currently active HTAB in LPAR
 
=== vtable  ===
 
0x003575B0 (3.15)
 
=== Member variables  ===
 
offset 0x48 - pointer to first PTE
 
offset 0x60 - LPID (4 bytes)
 
offset 0x64 - log2 of HTAB size (4 bytes)
 
=== Objects  ===
 
Here is the list of the HTAB objects i found in HV dump 3.15:
 
*0x001C8270 (VAS id 2, LPAR 1)
 
  * 0x00180000 - HTAB PTEs (HTAB size 256 kB)
 
*0x003A8050 (VAS id 3, LPAR 2)
 
  * 0x00500000 - HTAB PTEs (HTAB size 1 MB)
 
*0x003BC510 (VAS id 48, LPAR 2)
 
  * 0x00800000 - HTAB PTEs (HTAB size 1 MB)
 
=== LPAR_change_HTAB  ===
 
This function changes currently active HTAB. It writes to SDR1 register where HTAB address and size is stored.
 
0x002BE5D4 (3.15)
 
=== Process SLB  ===
 
Each HV process has 16 SLB entries.
 
Each SLB entry is 16 bytes large and is in format expected by opcode '''slbmte'''.
 
Most of the entries are zero (invalid).
 
Each process has 4 valid SLB entries: code, data, heap and stack.
 
==== Process 3  ====
 
===== SLB entries  =====
 
0x0012D1F0 (3.15)
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Name
! ESID
! VSID
|-
| code
| 0x8
| 0x38
|-
| data
| 0xC
| 0x3C
|-
| heap
| 0xA
| 0x3A
|-
| stack
| 0xF
| 0x3F
|}
 
==== Process 5  ====
 
===== SLB entries  =====
 
0x00093120 (3.15)
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Name
! ESID
! VSID
|-
| code
| 0x8
| 0x48
|-
| data
| 0xC
| 0x4C
|-
| heap
| 0xA
| 0x4A
|-
| stack
| 0xF
| 0x4F
|}
 
==== Process 6  ====
 
===== SLB entries  =====
 
0x000E6960 (3.15)
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Name
! ESID
! VSID
|-
| code
| 0x8
| 0x58
|-
| data
| 0xC
| 0x5C
|-
| heap
| 0xA
| 0x5A
|-
| stack
| 0xF
| 0x5F
|}
 
==== Process 9  ====
 
===== SLB entries  =====
 
0x00763E20 (3.15)
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Name
! ESID
! VSID
|-
| code
| 0x8
| 0x8
|-
| data
| 0xC
| 0xC
|-
| heap
| 0xA
| 0xA
|-
| stack
| 0xF
| 0xF
|}
 
= VUART  =
 
VUART is a bi-directional communication link. A VUART object has a peer VUART object.
 
Data written to a VUART object is stored NOT in the data buffer of the VUART object but in the data buffer of the peer VUART object.
 
== VUART table  ==
 
Every LPAR has a VUART table. A VUART table has 256 entries. Each entry is a pointer to a VUART object that implements VUART interface.
 
0x00677218 (3.15) - address of VUART table of LPAR 1
 
Here is the list of all VUART objects in LPAR 1 i found in HV 3.15:
 
*0x006ABD90 - VUART 0
*0x006ABEB0 - VUART 1
*0x006A3CB0 - VUART 2
*0x006A3DD0 - VUART 3
*0x000A3410 - VUART 5
*0x000A3250 - VUART 6
 
VUART [0-3] are used by /dev/sc[0-3] respectively.
 
VUART [0-3] are linked to VUART objects of different type i could not yet identify. These unknown VUART objects use '''eieio''' opcode a lot. So i think, they communicate with hardware peripheral.
 
A write/read to/from /dev/sc[0-3] is a write/read to/from VUART.
 
<br>
 
0x00762AA8 (3.15) - address of VUART table of LPAR 2
 
Here is the list of all VUART objects in LPAR 2 i found in HV 3.15:
 
*0x00126660 - VUART 0
*0x000A3010 - VUART 2
 
VUART 0 and VUART 2 of LPAR 2 are created by Process 9 during LPAR construction.
 
== VUART class  ==
 
=== Member variables  ===
 
offset 0x48 - pointer to peer VUART object
 
offset 0x58 - write pointer into data ring buffer
 
offset 0x60 - read pointer into data ring buffer
 
offset 0x68 - pointer to data ring buffer
 
offset 0x70 - size of data ring buffer (8 bytes)
 
offset 0x78 - size of data stored in data ring buffer currently (8 bytes)
 
offset 0x88 - tx trigger (8 bytes)
 
offset 0x90 - rx trigger (8 bytes)
 
offset 0x98 - interrupt mask (8 bytes)
 
offset 0xA8 - port number (4 bytes)
 
== Methods  ==
 
pmpi_read_virtual_uart(port, buf, size, nread) - 0x002EB30C (3.15)
 
pmpi_write_virtual_uart(port, buf, size, nwritten) - 0x002EB0EC (3.15)
 
VUART_read(pointer to VUART object, buf, size, nread) - 0x002E8654 (3.15)
 
VUART_write(pointer to VUART object, buf, size, nwritten) - 0x002E8428 (3.15)
 
== Guest OS VUART 0 (AV Manager)  ==
 
All data sent to VUART 0 in LPAR 2 is written into the data buffer of VUART 5 of LPAR 1.
 
VUART 5 of LPAR 1 is accessed by Process 9 in LPAR 1 through the file '''/proc/partitions/2/vuart/0'''.
 
*Process 9 of LPAR 1 uses RSX syscalls to access RSX driver and memory mapped device access (/dev/ioif0).
 
== Guest OS VUART 2 (System Manager)  ==
 
All data sent to VUART 2 in LPAR 2 is written into the data buffer of VUART 6 of LPAR 1.
 
VUART 6 of LPAR 1 is accessed by Process 9 in LPAR 1 through the file '''/proc/partitions/2/vuart/2'''.
 
*System manager supports 62 (0-61) service ids.
*Process 9 has a SID table. SID table has 62 entries.
*Each entry is a pointer to a function responsible for processing SID packets.
 
= AV Manager  =
Crossreference: [http://wiki.gitbrew.org/wikibrew/PS3:HvReverseEngineering#AV_Manager gitbrew.org::AV Manager] <br />
 
* AV Manager is running in Process 9 of HV.
* It communicates with Guest OS through '''/proc/partitions/0/vuart/0 file'''.
* GameOS accesses AV Manager through '''syscalls 367 - 370'''.
* PS2 Soft EMU accesses AV Manager also.
 
* Communicates with '''SYSCON 0 (/dev/sc0)'''
* Communicates with '''IOIF0 (/dev/ioif0 or RSX)'''
 
==Commands==
 
===Get HDCP KSV (0xC)===
 
* Returns HDCP KSV
* HDMI KSV is read from SYSCON
* KSV is stored in memory dump of HV process 9 (where AV Manager runs)
 
SYSCON request packet:
<pre>
30 01 0200 0000 8033 00000000 0004 0004 11 00 0000 0000ff01
</pre>
 
===Set HDMI Mode (0x40001)===
 
* Sets HDMI mode
* Mode is set by SYSCON
* Disabling HDCP
 
= System Manager (SM)  =
 
*System Manager (SM) is running in Process 9 of HV.
*It communicates with Guest OS through '''/proc/partitions/2/vuart/2 file'''.
*GameOS accesses SM through '''syscalls 372 - 415'''
 
== System Manager class  ==
 
=== Member variables  ===
 
offset 0x10 - LPAR state (8 bytes)
 
offset 0x68 - LPAR auth id
 
offset 0x70 - LPAR name
 
offset 0x90 - LPAR image path
 
offset 0x1C0 - LPAR ability (8 bytes)
 
=== Types of System Manager  ===
 
*There are 6 different SM types
*When Process 9 starts it reads profile file, by default '''DEFAULT.SPP''', by sending requests to SPL (Secure Profile Loader) and constructs System Managers listed in this profile file.
*'''So, the profile file controls which System Manager types are available later.'''
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Name
! LPAR name
|-
| SCE_CELLOS_PME
| -
|-
| SCE_CELLOS_SYSTEM_MGR
| PS3_LPAR
|-
| SCE_CELLOS_SYSTEM_MGR_PS2
| PS2_LPAR
|-
| SCE_CELLOS_SYSTEM_MGR_PS2_SW
| PS2_SW_LPAR
|-
| SCE_CELLOS_SYSTEM_MGR_PS2_GX
| PS2_GX_LPAR
|-
| SCE_CELLOS_SYSTEM_MGR_LINUX
| LINUX_LPAR
|}
 
=== Ability Bitmask  ===
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Index
! Name
! Ability Bitmask (Hex)
! Ability Bitmask (Binary)
|-
| 0
| SCE_CELLOS_PME
| 0x1
| 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001
|-
| 1
| SCE_CELLOS_SYSTEM_MGR
| 0x3BF7EF
| 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 1011 1111 0111 1110 1111
|-
| 2
| SCE_CELLOS_SYSTEM_MGR_PS2_SW
| 0x1226D
| 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0010 0010 0110 1101
|-
| 3
| SCE_CELLOS_SYSTEM_MGR_LINUX
| 0x40012
| 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 0000 0000 0001 0010
|}
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Bit Position (from right)
! SID
! Description
|-
| 1
| 5 (SET_NEXT_OP)
| Shutdown or Reboot LPAR
|-
| 2
| 5 (SET_NEXT_OP)
| Boot PS3 LPAR
|-
| 3
| 5 (SET_NEXT_OP)
| Boot PS2_SW LPAR
|-
| 4
| 5 (SET_NEXT_OP)
| Boot LINUX LPAR
|-
| 5
| 12 (CONTROL_LED)
| Control LED
|-
| 6
| 21 (RING_BUZZER)
| Ring Buzzer
|-
| 7
| 19 (SET_CONFIG)
| Set Config
|-
| 9
| 25 / 50 (FAN_POLICY)
| Fan Policy
|-
| 10
| 26 (REQUEST_ERROR_LOG)
| Request Error Log
|-
| 10
| 28 (REQUEST_BE_COUNT)
| Request BE Count
|-
| 10
| 32 (REQUEST_SYSTEM_EVENT_LOG)
| Request System Event Log
|-
| 12
| 30 (REQUEST_SC_VERSION)
| Request SC Version
|-
| 14
| 39 (SET_SHOP_DEMO_MODE)
| Set Shop Demo Mode
|}
 
== Service ID (SID)  ==
 
SM supports 62 (0-61) SIDs.
 
The value of SM member variable '''ability''' controls which SIDs may be used by LPAR.
 
{| class="wikitable FCK__ShowTableBorders"
|-
! SID
! Name
! Description
|-
| 0
| -
| -
|-
| 1
| REQUEST
| -
|-
| 2
| RESPONSE
| -
|-
| 3
| COMMAND
| -
|-
| 4
| EXTERN_EVENT
| -
|-
| 5
| SET_NEXT_OP
| -
|-
| 6
| -
| -
|-
| 7
| -
| -
|-
| 8
| SET_ATTR
| -
|-
| 9
| GET_INTER_LPAR_PARAM
| -
|-
| 10
| SET_INTER_LPAR_PARAM
| -
|-
| 11
| -
| -
|-
| 12
| CONTROL_LED
| -
|-
| 13
| TEMPERATURE
| -
|-
| 14
| -
| -
|-
| 15
| Shares data with 25
| -
|-
| 16
| -
| -
|-
| 17
| -
| -
|-
| 18
| -
| -
|-
| 19
| SET_CONFIG
| -
|-
| 20
| -
| -
|-
| 21
| RING_BUZZER
| -
|-
| 22
| -
| -
|-
| 23
| -
| -
|-
| 24
| -
| -
|-
| 25
| FAN_POLICY
| -
|-
| 26
| REQUEST_ERROR_LOG
| -
|-
| 27
| -
| -
|-
| 28
| REQUEST_BE_COUNT
| -
|-
| 29
| -
| -
|-
| 30
| REQUEST_SC_VERSION
| -
|-
| 31
| -
| -
|-
| 32
| REQUEST_SYSTEM_EVENT_LOG
| -
|-
| 33
| -
| -
|-
| 34
| RTC_ALARM
| -
|-
| 35
| -
| -
|-
| 36
| RTC_ALARM
| -
|-
| 37
| -
| -
|-
| 38
| RTC_ALARM
| -
|-
| 39
| SET_SHOP_DEMO_MODE
| -
|-
| 40
| BOOT_PARAMETER
| -
|-
| 41
| -
| -
|-
| 42
| BOOT_PARAMETER
| -
|-
| 43
| -
| -
|-
| 44
| FACTORY_PROCESS_COMP
| -
|-
| 45
| -
| -
|-
| 46
| FACTORY_PROCESS_COMP
| -
|-
| 47
| -
| -
|-
| 48
| FACTORY_PROCESS_COMP
| -
|-
| 49
| -
| -
|-
| 50
| FAN_POLICY
| -
|-
| 51
| -
| -
|-
| 52
| -
| -
|-
| 53
| -
| -
|-
| 54
| -
| -
|-
| 55
| -
| -
|-
| 56
| -
| -
|-
| 57
| -
| -
|-
| 58
| -
| -
|-
| 59
| -
| -
|-
| 60
| -
| -
|-
| 61
| -
| -
|}
 
=== 12 - CONTROL_LED  ===
 
*I have tested this service with PSGroove and GameOS is allowed to use it.
*GameOS '''syscall 386''' uses this service.
 
==== Packet Body  ====
<pre>struct sysmgr_ctrl_led
{
    u8 field0;
    u8 field1;
    u8 field2;
    u8 res1;
    u8 field4;
    u8 field5;
    u8 res2[10];
};
</pre>
==== Parameters  ====
 
I have tested the following parameters with this service:
 
{| class="wikitable FCK__ShowTableBorders"
|-
! field0
! field1
! field2
! field4
! field5
! Description
|-
| 0x1
| 0x0
| 0xFF
| 0xFF
| 0xFF
| Turns off the power button LED
|-
| 0x1
| 0x1
| 0xFF
| 0xFF
| 0xFF
| Turns on the power button LED
|}
 
=== 21 - RING_BUZZER  ===
 
*I have tested this service with PSGroove and GameOS is allowed to use it
 
==== Packet Body  ====
<pre>struct sysmgr_ring_buzzer
{
    u8 res1;
    u8 field1;
    u8 field2;
    u8 res2;
    u32 field4;
};
</pre>
==== Parameters  ====
 
I have tested the following parameters with this service:
 
{| class="wikitable FCK__ShowTableBorders"
|-
! field1
! field2
! field4
! Description
|-
| 0x29
| 0x4
| 0x6
| Makes a short single beep
|-
| 0x29
| 0xA
| 0x1B6
| Makes a triple beep
|-
| 0x29
| 0x7
| 0x36
| -
|-
| 0x29
| 0xA
| 0xFFF
| Makes a continuous beep
|}
field 1 seems relative to beep tone, as 0x25 sounds different
 
=== Active System Managers in HV dump 3.15  ===
 
There are 4 active SMs in HV dump.
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Index
! Name
! LPAR auth id
! LPAR image pathname
! Ability Bitmask (Hex)
|-
| 0
| SCE_CELLOS_PME
| 0x1070000001000001
| /flh/os/this_is_dummy
| 0x1
|-
| 1
| SCE_CELLOS_SYSTEM_MGR
| 0x1070000002000001
| /flh/os/lv2_kernel.self
| 0x3BF7EF
|-
| 2
| SCE_CELLOS_SYSTEM_MGR_PS2_SW
| 0x1020000003000001
| /local_sys0/ps2emu/ps2_softemu.self
| 0x1226D
|-
| 3
| SCE_CELLOS_SYSTEM_MGR_LINUX
| 0x1080000004000001
| /flh/lx/linux
| 0x40012
|}
 
*GameOS file image '''lv2_kernel.self''' is stored on '''/dev/rflash1'''
*Linux file image is stored on '''/dev/rflash_1x''' or '''/dev/rflash_1xp'''
 
== Booting Linux LPAR through System Manager  ==
 
To boot Linux LPAR from GameOS when Linux support was not removed (Ability Mask of PS3 System Manager needs patching&nbsp;!!!):
 
*Send SID packet '''SET_NEXT_OP''' with operation '''OP_LPAR_REBOOT''' and the index of Linux system manager to System Manager (VUART 2)
*Send SID packet '''REQUEST''' with type '''SHUTDOWN''' to System Manager (VUART 2)
*Execute lv1_panic HV call in GameOS
 
It should also work when Linux support was removed but Linux system manager was not removed from Process 9 and also assumed that a Linux kernel image is stored at the right place in '''/dev/rflash_1x'''.
 
It's just a theory, nothing else, that i gathered during HV reversing. It needs a practical proof. Unfortunately, i don't have access to Hypervisor.
 
== Booting modified and reencrypted lv2_kernel.self ==
 
*The System Manager of GameOS sends the path to '''lv2_kernel.self''' to SLL (Secure LPAR Loader) and SLL loads it from FLASH device file '''/dev/rflash1'''
*I stored a new lv2_kernel.self on FLASH directly by writing FLASH from GameOS. It't risky but if you know what you are doing then it's safe. I warned you guys. You could brick your PS3.
*Then i added a new TOC entry to FLASH device which points to the new lv2_kernel.self
*I patched the path to lv2_kernel.self in the System Manager of GameOS so it points to my new GameOS kernel (You need HV rights to do it)
*Then i rebooted GameOS without rebooting HV, so the patched file path should not change
*This method has the advantage that when the new lv2_kernel.self won't work you can just reboot HV and it will load the original lv2_kernel.self again
*lv2_kernel.self can be also loaded from GameOS dev_flash. For that, you have to change the path to '''lv2_kernel.self''' in '''default.spp''' from '''/flh/os/lv2_kernel.self''' to '''/local_sys0/lv2_kernel.self''' and store lv2_kernel.self on dev_flash.
 
= AV Manager  =
 
All data sent to VUART 0 in LPAR 2 is written into the data buffer of VUART 5 of LPAR 1.
 
VUART 5 of LPAR 1 is accessed by Process 9 in LPAR 1 through the file '''/proc/partitions/2/vuart/0'''.
 
*During initialization, AV Manager opens '''/dev/ioif0''' device and maps different address ranges of the device into address space of Process 9
*'''/dev/ioif0''' is NOT opened and mapped if the value of repository node '''lv1.rsx.enable''' is less than 1
*'''/dev/ioif0''' is mapped with READ/WRITE protection
*File descriptor of '''/dev/ioif0''' in Process 9 is 4
*AV Manager supports a lot more commands than used on Linux
*Every command is implemented by a class
 
== Mapped Address Ranges From /dev/ioif0  ==
 
The base address of '''/dev/ioif0''' is 0x28000000000. The device supports only mmap system call, it cannot be read or written. It also doesn't support ioctl.
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Index
! Absolute Address Range
! Size
! Mapped Address in Process 9 Address Space
|-
| 0
| 0x28000000000 - 0x28000002000
| 0x2000
| 0xA0019000
|-
| 1
| 0x28001800000 - 0x28001801000
| 0x1000
| 0xA0004000
|-
| 2
| 0x28000600000 - 0x28000604000
| 0x4000
| 0xA001A000
|-
| 3
| 0x28000680000 - 0x28000684000
| 0x4000
| 0xA0006000
|-
| 4
| 0x28000080000 - 0x28000088000
| 0x8000
| 0xA000A000
|-
| 5
| 0x28000088000 - 0x28000089000
| 0x1000
| 0xA000E000
|-
| 6
| 0x2800000C000 - 0x2800000D000
| 0x1000
| 0xA0016000
|-
| 7
| 0x2800008A000 - 0x2800008B000
| 0x1000
| 0xA0017000
|-
| 8
| 0x2800008C000 - 0x2800008D000
| 0x1000
| 0xA0018000
|}
 
= Process socket services  =
 
== Function ID and Packet ID  ==
 
*Processes 3, 5 and 6 provide services (functions) to other Processes through sockets (something like RPC).
*A service is identified by a function ID.
*Each process has a hash table which maps a function ID to socket port ID.
*Services (functions) can be further differentiated by a packet ID.
*To request a service, a Process sends a packet with specified function and packet ID to the Process that provides the service.
*A process that provides a service (function) has a table of objects which handle different packet IDs.
*Services are synchronous, a client sends a request and waits for a response.
*If a Process requests a service that is located in the same Process then the service is called directly and sockets are not used&nbsp;!!! (e.g. SLL requests from DM creating VUART port during GameOS loading, SLL and DM are in the same Process, so SLL calls DM directly)
 
== Port ID - Process ID mapping  ==
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Port ID
! Process ID
|-
| 0x23
| 6
|-
| 0x24
| 5
|-
| 0x25
| 3
|}
 
== Function ID - Port ID mapping  ==
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Function ID
! Port ID
! Supported Packet IDs
! Function Description
|-
| 0x2000
| 0x23
| 0x2001 - 0x2017
| [[Virtual_TRM_Manager|Virtual TRM Manager]]
|-
| 0x3000
| 0x24
| 0x3001 - 0x3003
| [[Secure_RTC_Manager|Secure RTC]]
|-
| 0x5000
| 0x23
| 0x5001 - 0x500A
| [[Storage_Manager|Storage Manager]]
|-
| 0x6000
| 0x23
| 0x6001 - 0x6011
| [[Update_Manager|Update Manager]]
|-
| 0x8000
| 8
| 0x8001 - 0x8005
| [[Updater_Frontend|Updater Frontend]]
|-
| 0x9000
| 0x24
| 0x9001 - 0x9016
| [[SC_Manager|SC Manager]]
|-
| 0x10000
| 0x23
| 0x10001-0x10007
| [[SB_Manager|SBM (South Bridge Manager)]]
|-
| 0x11000
| 0x25
| 0x11001 - 0x11002
| [[Security_Policy_Manager|SPM (Security Policy Manager)]]
|-
| 0x14000
| 0x25
| 0x14004 - 0x14005
| [[Secure_LPAR_Loader|SLL (Secure LPAR Loader)]]
|-
| 0x15000
| 0x24
| 0x15001, 0x15003, 0x15009
| [[Secure_Profile_Loader|SPL (Secure Profile Loader)]]
|-
| 0x17000
| 0x24
| 0x17001 - 0x17017
| [[Indi_Info_Manager|Indi Info Manager]]
|-
| 0x18000
| 0x25
| 0x18001, 0x18002, 0x18004
| [[Dispatcher_Manager|Dispatcher Manager]]
|-
| 0x19000
| 0x24
| 0x19002 - 0x19005
| [[AIM_Manager|AIM]]
|-
| 0x22000
| 0x16
| 0x22001 - 0x22004
| [[Factory_Data_Manager|Factory Data Manager]]
|-
| 0x24000
| 0x23
| 0x24001 - 0x24002
| [[USB_Dongle_Authenticator|USB Dongle Authenticator]]
|-
| 0x25000
| 0x23
| 0x25001 - 0x25002
| [[User_Token_Manager|User Token Manager]]
|}
 
== SS Packet  ==
 
*SS means '''Secure Service'''&nbsp;?
*Processes send SS Packets to request a service or to reply to a service request.
 
=== Member variables  ===
 
offset 0x8 - packet ID (8 bytes)
 
offset 0x10 - function ID (8 bytes)
 
offset 0x18 - return value (4 bytes)
 
offset 0x20 - subject ID (2 * 8 bytes)
 
=== Header  ===
 
*All services use a common header.
*The header of a SS Packet is 0x28 bytes large.
<pre>struct ss_header
{
    uint64_t packet_id;
    uint64_t function_id;
    uint32_t retval;
    uint8_t res[4];
    uint64_t laid;            /* LPAR Authority ID */
    uint64_t paid;            /* Program Authority ID */
}
</pre>
==== SS Service Return Values  ====
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Error Code
! Description
|-
| 0x00000000
| Success
|-
| 0x00000005
| Access Violation
|-
| 0x00000006
| No Entry&nbsp;?
|-
| 0x00000009
| Invalid Parameter
|-
| 0x0000000F
| Call Limit Exceeded&nbsp;?
|}
 
=== Body  ===
 
*The body of a SS Packet follows after the header.
*The size of the body depends on a used service.
 
= LPAR Memory Management  =
 
== Memory Region class  ==
 
This class is the base class for different memory region types.
 
=== vtable  ===
 
0x003578B0 (3.15)
 
=== Member variables  ===
 
offset 0x40 - pointer to LPAR object that owns this memory region
 
offset 0x48 - type of memory region (8 bytes)
 
offset 0x50 - LPAR start address of memory region
 
offset 0x58 - size of memory region (8 bytes)
 
offset 0x60 - flags (8 bytes)
 
offset 0xA0 - log2 of page size
 
=== Generating New LPAR Memory Region Addresses ===
 
generate_new_lpar_mem_region_address(?, memory region size, log2(page size), ?, ?) - 002C82E8 (3.15)
 
generate_new_lpar_mem_region_address - 002C6570 (3.41)
 
*The function returns a new LPAR memory region address.
*This method is used e.g. in all HV calls which create any kind of memory regions, e.g. '''lv1_allocate_memory''', '''lv1_map_htab''', '''lv1_undocumented_function_114''', '''lv1_construct_logical_spe''', '''lv1_map_device_mmio_region''' or '''syscall 0x10040'''.
 
==== Encoding LPAR Memory Region Start Addresses and Sizes ====
 
*Size of LPAR memory region is encoded in the LPAR memory region start address.
*That is why e.g. the LPAR Memory Region Start Addresses of LPAR Memory Region of size 4096 byte begin with '''0x300000000000''', '''0x300000000000 >> 42 = 0xC = log2(4096)'''.
*Each LPAR has a counter (8 bytes) which is incremented by 1 every time a new LPAR Memory Region is created.
*Before incrementing, the counter is shifted left by '''log2(LPAR Memory Region Size)''' and ored with '''log2(LPAR Memory Region Size) << 42'''.
 
LPAR Memory Region Start Address >> 42 = log2(LPAR Memory Region Size)
 
LPAR Memory Region Start Address = (log2(LPAR Memory Region Size) << 42) |
    (counter << log2(LPAR Memory Region Size))
 
===== LPAR Memory Region Address Counter =====
 
*LPAR Memory Region Address Counter is stored at address: '''0x38(LPAR ptr) + 0x9E8'''
*LPAR1's Memory Region Address Counter is at address '''0x00677A48''' in HV dump 3.15
*LPAR2's Memory Region Address Counter is at address '''0x007632D8''' in HV dump 3.15
*LPAR1's Memory Region Address Counter is at address '''0x00677A48''' in HV dump 3.41
*LPAR2's Memory Region Address Counter is at address '''0x00161E68''' in HV dump 3.41
 
== Physical Memory Region class  ==
 
This type of memory region is created e.g. in '''lv1_allocate_memory''' HV call or in '''syscall 0x10000'''.
 
=== vtable  ===
 
0x00357D08 (3.15)
 
=== Member variables  ===
 
offset 0xB0 - pointer to object that stores a list of addresses of physical pages owned by this memory region
 
offset 0xB8 - pointer to LPAR object that owns this memory region
 
offset 0xC0 - reference counter (8 bytes)
 
=== Objects  ===
 
Here is the list of physical memory region objects i found in HV 3.15.
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Address in HV dump
! LPAR id
! LPAR Start Address
! Size
! Flags
! log2(Page Size)
! Physical Page Addresses
|-
| 0x006B5510
| 1
| 0x300000001000
| 0x1000
| 0x0
| 0xC
| 0x672000
|-
| 0x006B5E50
| 1
| 0x440000040000
| 0x20000
| 0x0
| 0x11
| 0x6C0000
|-
| 0x006B6980
| 1
| 0x440000060000
| 0x20000
| 0x0
| 0x11
| 0x6E0000
|-
| 0x006B7F00
| 1
| 0x400000040000
| 0x10000
| 0x0
| 0x10
| 0x100000
|-
| 0x003A80F0
| 2
| 0x6C0058000000
| 0x7000000
| 0x4
| 0x18
| 0x1000000 - 0x7000000
|-
| 0x003BE800
| 2
| 0x300000047000
| 0x1000
| 0x0
| 0xC
| 0x1FA000
|-
| 0x006BDAA0
| 2
| 0x0
| 0x8000000
| 0x8
| 0x1B (single huge page)
| 0x8000000
|}
 
So, Linux kernel should be located at physical address 0x8000000 and Linux syscall handler at 0x8000C00. Too bad that the HV dump is not large enough.
 
=== GameOS Physical Memory Regions  ===
 
*GameOS allocates nearly all physical memory of PS3 for itself&nbsp;!!! That is why new HV calls '''lv1_allocate_memory''' with large memory region sizes will fail.
*So when someone wants a large piece of physical memory, he can borrow it from GameOS's LPAR memory region that starts at '''0x700020000000'''. It can be used for example to send update packages to Update Manager which are very large.
 
Here is the list of physical memory regions of GameOS i found in HV 3.41:
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Start Address
! Size
! Access Right
! Max Page Size
! Flags
! Real Addresses
|-
| 0x0
| 0x1000000
| 0x3
| 0x18
| 0x8
| 0x1000000 - 0x1FFF000
|-
| 0x500000300000
| 0xA0000
| 0x3
| 0x10
| 0x8
| 0x380000 - 0x38F000, 0x3B0000 - 0x3BF000, 0x1E0000 - 0x1FF000, 0x3C0000 - 0x3FF000, 0xFF00000 - 0xFF1F000
|-
| 0x700020000000
| 0xE900000 (huge memory region)
| 0x3
| 0x14
| 0x0
| 0x400000 - 0x5FF000, 0x800000 - 0xFFF000, 0x2000000 - 0xFEFF000
|}
 
== HTAB Memory Region class  ==
 
This memory region is created when a HTAB is mapped into LPAR's address space. It's created in '''lv1_map_htab''' HV call.
 
=== vtable  ===
 
0x00357C98 (3.15)
 
=== Member variables  ===
 
offset 0xB0 - pointer to VAS object that owns the HTAB
 
=== Objects  ===
 
Here is the list of HTAB memory region objects i found in HV 3.15.
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Address in HV dump
! LPAR id
! VAS id
! LPAR Start Address
! Size
! Flags
! log2(Page Size)
|-
| 0x001FE0F0
| 2
| 3
| 0x500000C00000
| 0x100000
| 0xC000000000000000
| 0x14
|-
| 0x003BD850
| 2
| 3
| 0x500004300000
| 0x100000
| 0xC000000000000000
| 0x14
|-
| 0x003BDEA0
| 2
| 3
| 0x500004500000
| 0x100000
| 0xC000000000000000
| 0x14
|}
 
=== GameOS HTAB  ===
 
*HTAB of GameOS is already mapped into address space of GameOS so that is why HV call '''lv1_map_htab''' will fail until you unmap it with '''lv1_unmap_htab'''
*Effective address of GameOS HTAB is '''0x800000000F000000'''
*Virtual address of GameOS HTAB is '''0xF000000'''
*Size of GameOS HTAB is '''0x40000'''
*GameOS HTAB supports large pages of size '''64K''' and '''1M'''
*GameOS HTAB can be easily dumped by reading 0x40000 bytes at EA 0x800000000F000000
 
=== GameOS SLB  ===
 
Here is the dump of SLB entries from GameOS 3.41:
<pre>0x8000000008000000  0x0000000000000500
0x8000000208000000  0x0000000000020500
0x8000000300000000  0x0000000000030510
0x0000000000000000  0x0000000000000000
0x0000000080000000  0x0000000000038C00
0x00000000A0000000  0x000000000003AC00
0x00000000C0000000  0x000000000003CC00
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x0000000000000000  0x0000000000000000
0x8000000010057960  0x8000000000313E78
0x8000000010057940  0x0000000000000000
0x800000000001B698  0x0000000000000000
0x8000000010057930  0x8000000000490708
0x80000000002B6C68  0x80000000003DE928
0x8000000010057EC0  0x80000000003DE920
0x0000000000000000  0x8000000000309810
0x80000000004B3000  0x0000000000000000
0x8000000010057CC0  0x0000000000000000
0x80000000004AF000  0x80000000004E1F00
0x80000000100579C8  0x80000000100579C0
0x80000000100579E0  0x2400002200000000
0x80000000004CF5B0  0x8000000200012000
0x80000000100579F8  0x80000000100579F0
0x8000000010057A10  0x80000000004A3A00
0x80000000004CF5B0  0x80000000004C8D00
0x800000000001BF6C  0x80000000004CD400
0x800000000001B698  0x80000000004C8100
0x80000000100579D0  0x80000000004B48C0
0x0000000000001C08  0x0000000000000000
0x8000000010057A78  0x8000000010057A70
0x8000000010057A90  0x0000000000000000
0x80000000004CF90C  0x0000000000000000
0x0000000000000000  0x8000000010057A80
0x8000000010057A90  0x8000000000309810
0x80000000004CF62C  0x0000000000000000
0x8000000010057CC0  0x0000000000000000
0x80000000004AF000  0x80000000004B48C0
0x00004000001C0000  0x0000000000000001
0x00000000D0000000  0x0000A8E3EE7D10DA
0x0000000000000000  0x0000000000000000
0x80000000004D8088  0x80000000004D9000
</pre>
== SPE MMIO Memory Region class  ==
 
This type of memory region represents MMIO memory region of a SPE. It's created e.g. in '''lv1_construct_logical_spe''' or in '''syscall 0x10040'''.
 
=== vtable  ===
 
0x003583F8 (3.15)
 
=== Member variables  ===
 
=== Objects  ===
 
Here is the list of SPE memory region objects i found in HV 3.15.
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Address in HV dump
! LPAR id
! SPE
! LPAR Start Address
! Size
! Physical Address
! Flags
! log2(Page Size)
|-
| 0x003ABC20
| 2
| 1
| 0x4C0000880000
| 0x80000
| 0x20000080000
| 0xA000000000000000
| 0xC
|-
| 0x003AAD70
| 2
| 2
| 0x4C0000980000
| 0x80000
| 0x20000100000
| 0xA000000000000000
| 0xC
|-
| 0x003A8880
| 2
| 3
| 0x4C0000780000
| 0x80000
| 0x20000180000
| 0xA000000000000000
| 0xC
|-
| 0x003B4F70
| 2
| 4
| 0x4C0000A80000
| 0x80000
| 0x20000200000
| 0xA000000000000000
| 0xC
|-
| 0x003AB700
| 2
| 5
| 0x4C0000680000
| 0x80000
| 0x20000280000
| 0xA000000000000000
| 0xC
|-
| 0x003B5BE0
| 2
| 6
| 0x4C0000B80000
| 0x80000
| 0x20000300000
| 0xA000000000000000
| 0xC
|}
 
== SPE Shadow Registers Memory Region class  ==
 
This type of memory region represents shadow registers memory region of a SPE. It's created e.g. in '''lv1_construct_logical_spe''' or in '''syscall 0x10040'''.
 
=== vtable  ===
 
0x00358448 (3.15)
 
=== Objects  ===
 
Here is the list of SPE Shadow Registers memory region objects i found in HV 3.15.
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Address in HV dump
! LPAR id
! SPE
! LPAR Start Address
! Size
! Physical Address
! Flags
! log2(Page Size)
|-
| 0x003ABDA0
| 2
| 1
| 0x300000012000
| 0x1000
| -
| 0xA000000000000000
| 0xC
|-
| 0x003B4290
| 2
| 2
| 0x300000014000
| 0x1000
| -
| 0xA000000000000000
| 0xC
|-
| 0x003A8A00
| 2
| 3
| 0x300000010000
| 0x1000
| -
| 0xA000000000000000
| 0xC
|-
| 0x003B50F0
| 2
| 4
| 0x300000016000
| 0x1000
| -
| 0xA000000000000000
| 0xC
|-
| 0x001FFC90
| 2
| 5
| 0x30000000E000
| 0x1000
| -
| 0xA000000000000000
| 0xC
|-
| 0x003AE5B0
| 2
| 6
| 0x300000018000
| 0x1000
| -
| 0xA000000000000000
| 0xC
|}
 
== Device MMIO Memory Region class  ==
 
This type of memory region is created when a device MMIO region is mapped into LPAR address space, e.g. in '''lv1_map_device_mmio_region'''.
 
=== vtable  ===
 
0x00352468 (3.15)
 
=== Member variables  ===
 
offset 0xA8 - physical address where the device MMIO region is mapped to
 
=== Objects  ===
 
Here is the list of Device MMIO memory region objects i found in HV 3.15.
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Address in HV dump
! LPAR id
! LPAR Start Address
! Size
! Flags
! log2(Page Size)
! Physical Address
! Device
|-
| 0x001FDF00
| 2
| 0x4000001D0000
| 0x10000
| 0x8000000000000000
| 0xC
| 0x24003010000
| USB controller
|-
| 0x003B3850
| 2
| 0x400000200000
| 0x10000
| 0x8000000000000000
| 0xC
| 0x24003020000
| USB controller
|-
| 0x003B6E50
| 2
| 0x4000001E0000
| 0x10000
| 0x8000000000000000
| 0xC
| 0x24003810000
| USB controller
|-
| 0x003B9950
| 2
| 0x4000001F0000
| 0x10000
| 0x8000000000000000
| 0xC
| 0x24003820000
| USB controller
|}
 
== GPU Device Memory Region class  ==
 
This type of memory region is created e.g. in '''lv1_gpu_open''', '''lv1_gpu_device_map''' and '''lv1_undocumented_function_114'''.
 
=== vtable  ===
 
0x00357C48 (3.15)
 
=== Member variables  ===
 
offset 0xA8 - physical address
 
=== Objects  ===
 
Here is the list of Device GPU memory region objects i found in HV 3.15.
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Address in HV dump
! LPAR id
! LPAR Start Address
! Size
! Flags
! log2(Page Size)
! Physical Address
|-
| 0x003AF380
| 2
| 0x700190000000
| 0xFE00000
| 0x8000000000000000
| 0x14
| 0x28080000000
|-
| 0x003AF500
| 2
| 0x4000001A0000
| 0xC000
| 0x8000000000000000
| 0xC
| 0x3C0000
|-
| 0x003AF680
| 2
| 0x4800006C0000
| 0x40000
| 0x8000000000000000
| 0xC
| 0x2808FE00000
|-
| 0x003AFC30
| 2
| 0x440000380000
| 0x20000
| 0x8000000000000000
| 0xC
| 0x28000C00000
|-
| 0x003BB420
| 2
| 0x3C0000108000
| 0x8000
| 0x8000000000000000
| 0xC
| 0x28000080100
|}
 
== Direct Map Memory Region class ==
 
This type of memory region is created in HV call '''lv1_undocumented_function_114'''.
'''lv1_undocumented_function_114''' allows you to map any memory address into LPAR's memory address.
 
* The HV call '''lv1_undocumented_function_115''' destroys a memory region of this type.
* HV allows GameOS to create objects of this type of size 0 only !!! But it can be exploited with a dangling HTAB entry.
 
=== vtable  ===
 
0x00357C48 (3.15)
 
=== Member variables  ===
 
offset 0xA8 - physical address
 
=== Exploiting HV with memory glitching and HV call lv1_undocumented_function_114 ===
 
Here is a short description of the method i used to exploit HV from GameOS 3.15 and 3.41.
 
* First i used the Geohot's method to create a dangling HTAB entry.
* Making memory glitch work on GameOS was the largest of my obstacles but i solved it and i'm able to create a dangling HTAB entry from GameOS within 1-3 minutes.
* Then i created many '''Direct Map Memory Region''' objects of size 0 with HV call '''lv1_undocumented_function_114''' and checked if they are within the page to which the dangling HTAB entry points to.
* When i found one such '''Direct Map Memory Region''' object i patched the size of this object to 0x1000. Then i pointed this memory region object to the code of HV call '''lv1_undocumented_function_114''' and patched 4 bytes in this HV call which allows me to create any '''Direct Map Memory Region''' objects without any restrictions.
* Function '''LPAR_construct_direct_mapping_mem_region''' which is used by HV call '''lv1_undocumented_function_114''' has a parameter (register %r9) and when this parameter is not 0 then HV will allow you to create any '''Direct Map Memory Region''' objects without restrictions, but unfortunately the HV call '''lv1_undocumented_function_114''' passes 0 in this parameter, so i just patched it.
* Then i mapped whole HV memory range with the patched HV call '''lv1_undocumented_function_114''' into the address space of GameOS.
* And now you have read/write access to the whole HV.
* $ONY could fix this exploit by disallowing creating of '''Direct Map Memory Region''' objects of size 0, but i know tons of other HV C++ classes which will allow me to exploit the HV in a similar way, so it wouldn't bring $ONY anything :-) And they have to change member variable offsets in those objects to make sure that i cannot patch them easily :-)
 
== Methods  ==
 
LPAR_get_memory_region_by_start_address - 0x002C7C40 (3.15)
 
LPAR_get_memory_region_by_address - 0x002C7DA8 (3.15)
 
LPAR_mem_addr_to_phys_addr(LPAR id, LPAR address, phys_addr) - 0x002FB8F0 (3.15)
 
LPAR_construct_direct_mapping_mem_region - 0x002D4D04 (3.15)
 
= Network Devices  =
 
== Ethernet Gelic Device  ==
 
device id = 0
 
MAC Address: 00:1F:A7:C6:2A:C5
 
device memory base address = 0x24003004000 (size = 0x1000)
 
== WLAN Gelic Device  ==
 
device id = 0
 
MAC Address: 02:1F:A7:C6:2A:C5 (locally administered)
 
=== Net Manager  ===
 
*Net Manager runs in Process 9
*It sends commands to '''/dev/sc1''' to reset WLAN Gelic device
*It opens '''/dev/net0''', sets MAC address and writes device firmware '''eurus_fw.bin''' to WLAN device by using '''ioctl''' syscall
 
=== /dev/net0  ===
 
The device supports 3 ioctl commands:
 
*0 - 0x002AC10C (3.15)
*1 - 0x002AC250 (3.15)
*2 - EURUS_STAT 0x002AC320 (3.15)
 
=== Methods  ===
 
net_control_cmd_GELIC_LV1_POST_WLAN_CMD - 0x0024A55C (3.15)
 
net_control_wlan_cmd_GELIC_EURUS_CMD_ASSOC - 0x00246C78 (3.15)
 
net_control_wlan_cmd_GELIC_EURUS_CMD_START_SCAN - 0x00248A14 (3.15)
 
net_control_wlan_cmd_GELIC_EURUS_CMD_SET_WEP_CFG - 0x00249F24 (3.15)
 
net_control_wlan_cmd_GELIC_EURUS_CMD_SET_WPA_CFG - 0x002497B8 (3.15)
 
= Event Notification  =
 
*Event Notfication is used e.g. to notify a LPAR about some event, e.g. device interrupt or notify a LPAR about destruction of another LPAR.
*For example Process 9 is notified through Event Notification when LPAR 2 is destructed.
*During LPAR construction, Process 9 creates an Outlet object with '''syscall 0x1001A''' and then passes the outlet ID to the '''syscall 0x10009''' that constructs the LINUX LPAR. In this way Process 9 is notified when LINUX LPAR is destructed.
 
== Outlet class  ==
 
This is the base Outlet class. There are different types of Outlet and they derive from this base class.
 
=== vtable  ===
 
0x00357DC0 (3.15)
 
=== Member variables  ===
 
offset 0x30 - type (8 bytes)
 
offset 0x38 - pointer to LPAR that owns this Outlet object
 
offset 0x48 - outlet id (8 bytes)
 
offset 0x90 - VIRQ assigned to this Outlet object (4 bytes)
 
== Event Receive Port class  ==
 
*This type of Outlet is created e.g. in '''lv1_construct_event_receive_port''' and in '''syscall 0x1001A'''.
*HV calls '''lv1_connect_irq_plug''' and '''lv1_connect_irq_plug_ext''' assigns a VIRQ to Event Receive Port object.
 
=== vtable  ===
 
0x00357E88
 
== VUART Outlet  ==
 
*HV supports only one VUART Outlet per LPAR
*'''lv1_configure_virtual_uart_irq''' constructs a VUART Outlet object and passes the address of LPAR's VUART IRQ Bitmap to HV
 
=== vtable  ===
 
0x00357DC0
 
=== VUART IRQ Bitmap  ===
 
*At address 0x38(LPAR ptr) + 0x158 is the VUART IRQ Bitmap owned by HV for LPAR (4 * 8 bytes = 256 bits)
*At address 0x38(LPAR ptr) + 0x150 is stored the physical address of LPAR's VUART IRQ Bitmap that was passed to '''lv1_configure_virtual_uart_irq'''
*When a VUART interrupt is generated by HV then first the VUART IRQ Bitmap owned by HV is updated and then this bitmap is copied to LPAR's VUART IRQ Bitmap, so VUART IRQ Bitmap is stored twice, once in HV and once in LPAR, just like IRQ State Bitmap.
*VUART IRQ Bitmap is not allowed to cross page boundary of LPAR memory region where it is stored. HV checks it and makes sure that it doesn't happen.
*'''GameOS 3.41''' VUART IRQ bitmap is at address '''0x80000000003556E8''' and of size '''32 bytes (256 bits, each bit corresponds to a VUART port)'''.
*'''GameOS 3.15''' VUART IRQ bitmap is at address '''0x8000000000354768'''.
 
= Logical PPE  =
 
*Logical PPE is used for interrupt management of LPAR.
*A Logical PPE object is created in '''syscall 0x10005'''. It' used e.g. in Process 9 during LPAR construction.
*'''syscall 0x10007''' activates a Logical PPE object
*0x67F0(HSPRG0) - pointer to currently active Logical PPE object (in HV dump it points to Linux PPE object naturally because the dump was made on Linux, so Linux LPAR was active at that time)
*E.g. '''lv1_get_logical_ppe_id''', '''lv1_start_ppe_periodic_tracer''' and '''lv1_set_ppe_periodic_tracer_frequency''' grab the currently active Logical PPE object
 
== vtable  ==
 
0x00357DF0 (3.15)
 
== Member variables  ==
 
offset 0x90 - pointer to an object that contains VIRQ-Outlet mapping table for thread 0
 
offset 0x98 - pointer to an object that contains VIRQ-Outlet mapping table for thread 1
 
== Objects  ==
 
Here is the list of Logical PPE objects i found in HV 3.15.
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Address in HV dump
! LPAR id
! PPE id
|-
| 0x0069C7F0
| 1
| 1
|-
| 0x007A8900
| 2
| 1
|}
 
== Virtual IRQ - Outlet Mapping  ==
 
*HV maintains 2 tables per PPE that map a VIRQ to an Outlet object.
*The table has 256 entries and is indexed by VIRQ.
*Each entry is a pointer to Outlet object.
*Each Logical PPE object has 2 tables, one for each thread of Cell CPU.
 
=== LPAR 1 PPE 1 Thread 0  ===
 
0x0069C990 (3.15) - address of VIRQ-Outlet table for '''LPAR 1 PPE 1 Thread 0''' (not empty)
 
{| class="wikitable FCK__ShowTableBorders"
|-
! VIRQ
! Address of Outlet object in HV dump
! Description
|-
| 58
| 0x00090D10
| -
|-
| 59
| 0x006BAC50
| -
|-
| 60
| 0x006B3ED0
| FLASH storage device / Storage device notification for LPAR 1
|-
| 61
| 0x00697E70
| VUART interrupts
|-
| 62
| 0x001C8F20
| -
|}
 
=== LPAR 1 PPE 1 Thread 1  ===
 
0x0069D9B0 (3.15) - address of VIRQ-Outlet table for '''LPAR 1 PPE 1 Thread 1''' (empty)
 
=== LPAR 2 PPE 1 Thread 0  ===
 
0x000A06B0 (3.15) - address of VIRQ-Outlet table for '''LPAR 2 PPE 1 Thread 0''' (not empty)
 
{| class="wikitable FCK__ShowTableBorders"
|-
! VIRQ
! Address of Outlet object in HV dump
! Description
|-
| 20
| 0x003AA210
| -
|-
| 21
| 0x003AFEC0
| -
|-
| 22
| 0x001FC010
| -
|-
| 23
| 0x003A8E50
| -
|-
| 24
| 0x001FFED0
| SPE 0 Class 0 Interrupt
|-
| 25
| 0x003AE160
| SPE 0 Class 1 Interrupt
|-
| 26
| 0x003AE350
| SPE 0 Class 2 Interrupt
|-
| 27
| 0x003AB100
| SPE 1 Class 0 Interrupt
|-
| 28
| 0x003AB2F0
| SPE 1 Class 1 Interrupt
|-
| 29
| 0x003AB4E0
| SPE 1 Class 2 Interrupt
|-
| 30
| 0x003AA6A0
| SPE 2 Class 0 Interrupt
|-
| 31
| 0x003AA890
| SPE 2 Class 1 Interrupt
|-
| 32
| 0x003AAA80
| SPE 2 Class 2 Interrupt
|-
| 33
| 0x003B44A0
| SPE 3 Class 0 Interrupt
|-
| 34
| 0x003B4690
| SPE 3 Class 1 Interrupt
|-
| 35
| 0x003B4AD0
| SPE 3 Class 2 Interrupt
|-
| 36
| 0x003B5300
| SPE 4 Class 0 Interrupt
|-
| 37
| 0x003B54F0
| SPE 4 Class 1 Interrupt
|-
| 38
| 0x003B56E0
| SPE 4 Class 2 Interrupt
|-
| 39
| 0x003AE7C0
| SPE 5 Class 0 Interrupt
|-
| 40
| 0x003AE9B0
| SPE 5 Class 1 Interrupt
|-
| 41
| 0x003AEBA0
| SPE 5 Class 2 Interrupt
|-
| 42
| 0x003B2040
| Storage device notification for LPAR 2
|-
| 43
| 0x003AEE30
| VUART interrupts
|-
| 44
| 0x001FEAA0
| -
|-
| 45
| 0x001FEED0
| HDD storage device
|-
| 46
| 0x003B5E20
| -
|-
| 47
| 0x003B7040
| -
|-
| 48
| 0x003B9B40
| -
|-
| 49
| 0x003B3A40
| -
|-
| 50
| 0x003BACA0
| Gelic device
|-
| 51
| 0x003BAE10
| UNKNOWN storage device
|-
| 52
| 0x003B8350
| -
|}
 
=== LPAR 2 PPE 1 Thread 1  ===
 
0x007A89E0 (3.15) - address of VIRQ-Outlet table for '''LPAR 2 PPE 1 Thread 1''' (not empty)
 
{| class="wikitable FCK__ShowTableBorders"
|-
! VIRQ
! Address of Outlet object in HV dump
! Description
|-
| 16
| 0x003B2480
| -
|-
| 17
| 0x003B2590
| -
|-
| 18
| 0x003B26A0
| -
|-
| 19
| 0x003B27B0
| -
|}
 
== IRQ State Bitmap  ==
 
*There is one IRQ State Bitmap (256 bits = 32 bytes) per thread of Logical PPE
*'''HSPRG0 value is per thread''', so there are 2 HSPRG0 values in HV dump&nbsp;!!!
*The IRQ State Bitmap of a thread is stored at -0x68E0(HSPRG0)
*When an Event or Interrupt happens then the bitmap at 0x68E0(HSPRG0) is updated
*The physical address of '''LPAR's IRQ State Bitmap''' of thread is stored at offset -0x68C0(HSPRG0)
*The address of LPAR's IRQ State Bitmap is passed to Hypervisor through HV call '''lv1_configure_irq_state_bitmap'''
*'''lv1_detect_pending_interrupts''' returns value of current IRQ State Bitmap.
*The IRQ State Bitmap is updated if an Outlet object is assigned to VIRQ and when Outlet generates an event
*After IRQ State Bitmap update, it's copied to LPAR's IRQ State Bitmap and a hardware interrupt is generated so that LPAR can read it's IRQ State Bitmap and handle interrupts.
*So, IRQ State Bitmap is stored twice, once in HV and once in LPAR, just like VUART IRQ Bitmap.
*'''GameOS''' IRQ state bitmap is stored at address '''SPRG0 + 0x1C0 and of size 64 bytes (256 bits state + 256 bits mask) per thread of Cell CPU'''. So there are 2 IRQ state bitmaps.
 
0x8941FC0 - physical address of LPAR's IRQ State Bitmap for Thread 0 of LINUX LPAR
 
0x8948FC0 - physical address of LPAR's IRQ State Bitmap for Thread 1 of LINUX LPAR
 
= System Controller (SC or SYSCON)  =
 
*Data received from SC is sent to a VUART
*'''lv1_get_rtc''' and '''syscall 0x10036''' communicate with '''SC VUART 4'''.
 
=== VUART Table ===
 
*Address of SC VUART Table - 0x00610410 (3.15).
*There are 5 VUARTs for SC in HV 3.15
 
Here is the SC VUART table from HV 3.15:
 
{| class="wikitable FCK__ShowTableBorders"
|-
! Index
! Address of VUART object in HV dump
! Description
|-
| 0
| 0x0060FD20
| This VUART is connected with the '''VUART 0 (/dev/sc0)''' of LPAR 1
|-
| 1
| 0x0060FE20
| This VUART is connected with the '''VUART 1 (/dev/sc1)''' of LPAR 1
|-
| 2
| 0x0060FF20
| This VUART is not connected to some peer VUART but i guess that it should be connected to '''VUART 2 (/dev/sc2)''' of LPAR1
|-
| 3
| 0x006124E0
| This VUART is connected with the '''VUART 3 (/dev/sc3)''' of LPAR 1
|-
| 4
| 0x00612DF0
| '''lv1_get_rtc''' and '''syscall 0x10036''' communicate with this VUART.
|}
 
== Interrupt Handling  ==
 
spider_sc_interrupt_handler - 0x0020A68C (3.15)
 
== Methods  ==
 
sc_vuart_4_get_peer_vuart - 0x002ED384 (3.15)
 
sc_send - 0x0020A908 (3.15)
 
sc_receive - 0x0020A354 (3.15)
 
sc_vuart_rx_trigger_callback - 0x002ED470 (3.15)
 
== lv1_get_rtc  ==
 
*'''lv1_get_rtc''' communicates with SC VUART 4.  
*20 bytes are written to the peer VUART of SC VUART 4.  
*After a request is sent to SC VUART 4, '''lv1_get_rtc''' busy waits until SC VUART 4 receive data buffer is not empty.  
*When SC VUART 4 receive data buffer is not empty, '''lv1_get_rtc''' reads 24 bytes from the VUART.
 
== SYSCON Protocol ==
 
* I was able to enable SYSCON Manager debug messages in HV Process 5
* Messages sent to SYSCON are at least '''0x10''' bytes of size. SC VUARTs check it before sending the messages to SYSCON.
* The header size of the SYSCON messages is '''0x10''' bytes.
 
=== Packet Header ===
 
* Packet header is of size '''0x10''' bytes.
* At offset '''0x6''' of SYSCON packet is the header checksum which is of size '''2''' bytes.
* '''The header checkum is just a sum of first 6 header bytes and 0x8000 constant'''
* The '''2nd byte''' in every SYSCON message has to be '''1''' or else the function '''sc_send''' fails.
* The '''word''' at offset '''0x8''' is the '''SC VUART index'''.
* The '''half-words''' at offset '''0xC''' and '''0xE''' have to be equal or the function '''sc_send''' fails.
 
<pre>
struct sc_hdr
{
    uint8_t field0;
    uint8_t field1;          /* always 1 */
    uint8_t field2[4];
    uint16_t cksum;          /* header checksum */
    uint32_t index;          /* syscon index (0 - /dev/sc0, 1 - /dev/sc1, 2 - /dev/sc2, 3 - /dev/sc3) */
    uint16_t size1;          /* body size */
    uint16_t size2;          /* body size */
};
</pre>
 
==== Calculating Packet Header Checksum ====
 
<pre>
/* calculating SC packet header checksum */
 
/*
* sc_hdr_cksum
*/
uint16_t sc_hdr_cksum(struct sc_hdr *sc_hdr)
{
    uint8_t *ptr;
    uint32_t sum;
 
    ptr = (uint8_t *) sc_hdr;
    sum = 0;
 
    for (i = 0; i < 6; i++)
        sum += *ptr++;
 
    sum += 0x8000;
 
    return sum & 0xffff;
}
 
struct sc_hdr sc_hdr;
 
memset(&sc_hdr, 0, sizeof(sc_hdr));
 
sc_hdr.cksum = sc_hdr_cksum(sc_hdr);
 
/* fill sc header here */
 
sc_hdr.cksum = sc_hdr_cksum(sc_hdr);
</pre>
 
=== Packet Body ===
 
* Packet body follows packet header
* Packet body size is stored at offset '''0xC''' and '''0xE''' in packet header and is of size 2 bytes
 
=== Reading SYSCON EPROM (NVS Service) ===
 
Here is a command which is sent to SYSCON to read 1 byte of EPROM at offset 0x48C07 (Product Mode):
0x14 <span style="background:#00FF00">0x01</span> 0x00 0x00 0x00 0x00 <span style="background:#FF0000">0x80 0x15</span> <span style="background:#FFFF00">0x00 0x00 0x00 0x00</span> <span style="background:#00FFFF">0x00 0x04</span> <span style="background:#00FFFF">0x00 0x04</span> 0x20 0x02 0x07 0x01
 
And here is the response to the above request:
0x14 <span style="background:#00FF00">0x01</span> 0x00 0x00 0x00 0x00 <span style="background:#FF0000">0x80 0x15</span> <span style="background:#FFFF00">0x00 0x00 0x00 0x03</span> <span style="background:#00FFFF">0x00 0x05</span> <span style="background:#00FFFF">0x00 0x05</span> 0x00 0x02 0x07 0x01 0xff
 
=== PCI Bus Power ===
 
* '''Used by PS2EMU System Manager in HV process 9 when PS2 EMU is booted'''
 
==== PCI Bus Power On ====
 
'''Request to SC1:'''
0x10 0x01 0x00 0x00 0x00 0x00 0x80 0x11 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x02 0x31 0x01
 
==== PCI Bus Power Off ====
 
'''Request to SC1:'''
0x10 0x01 0x00 0x00 0x00 0x00 0x80 0x11 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x02 0x31 0x00
 
=== Ring Buzzer ===
 
'''Request:'''
0x16 0x01 0x00 0x00 0x00 0x00 0x80 0x17 0x00 0x00 0x00 0x00 0x00 0x08 0x00 0x08 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00
 
=SYSCON=
Crossreference: [http://wiki.gitbrew.org/index.php/PS3:HvReverseEngineering#SYSCON gitbrew.org::SYSCON] <br />
 
SYSCON MMIO registers can be accessed on Linux with a driver using lv1_undocumented_function_114, e.g. '''ps3sbmmio'''.
Use ps3sbmmio device driver carefully, an access at some addresses could shutdown your PS3.
 
==Packet Header==
 
* Size is '''0x10'''.
 
<pre>
struct sc_hdr {
    uint8_t service_id;
    uint8_t version;              /* must be 1 !!! */
    uint16_t transaction_id;      /* returned in response */
    uint8_t res[2];
    uint16_t cksum;              /* checksum of first 6 header bytes */
    uint32_t communication_tag;  /* SYSCON tag: 0-4 */
    uint16_t payload_size[2];    /* body size */
};
</pre>
 
==Sending Packets==
 
* Before sending new packet to SYSCON, the Hypervisor checks 2 words at offsets 0x2400008DFF0 and 0x2400008CFF4.
* The Hypervisor busy waits until (value + 1) at offset 0x2400008CFF4 is NOT equal to value at offset 0x2400008DFF0.
* The packet is sent with 4 byte transfers.
* First, the Hypervisor sends the header of the packet, 4 word transfers.
* The header is written beginning at the address 0x2400008D000.
* After that the Hypervisor sends the body of the packet, with 4 byte transfers too.
* The body is written beginning at the address 0x2400008D010.
* If the packet size is NOT divisible by 4 then the Hypervisor sends the remaining bytes (at most 3) as a word padded with 0s.
* After the packet body was written, the Hypervisor calculates checksum of the whole packet and writes it at the address where the last word of packet body was written + 4.
<pre>
uint32_t cksum = 0;
 
for (i = 0; i < packet_size; i++)
    cksum -= packet[i];
 
cksum = cksum & 0xffff;
</pre>
* After the packet checksum was written, the Hypervisor reads the value at offset 0x2400008DFF0, modifies it and stores back:
<pre>
value = value + 1;
value &= 0xffff;
value = (value << 16) | value;
</pre>
* To notify the SYSCON about the new packet, the Hypervisor writes 0x1 to address 0x2400008E100.
 
==Receiving Packets==
 
* The Hypervisor installs an interrupt handler for the SYSCON.
* First, the Hypervisor reads a word from address 0x2400008E000, ors it with 0xFFFFFFFD and writes the value back.
* Then, the Hypervisor reads a word from address 0x2400008E004 and tests if bit 0x2 is set or not. The bit 0x2 should be not 0 or else the Hypervisor panics.
* After that, the Hypervisor reads a word at address 0x2400008CFF0 and 0x2400008DFF4. If there is a new packet pending from SYSCON, then the (value + 1) at 0x2400008CFF0 should be equal the value at 0x2400008DFF4.
* The Hypervisor reads the header of the packet beginning at the address 0x2400008C000.
* The header is read with 4 word transfers by the Hypervisor.
* The byte at offset 1 in the packet header must be 1 or else the Hypervisor discards the packet as invalid.
* The Hypervisor calculates the checksum of the packet header and checks it with the checksum stored in the header. If they don't match then the Hypervisor discards the packet.
* The Hypervisor reads the body of the packet beginning at the address 0x2400008C010.
* The header and the body of the received packet can be read as many times as you want !!! They remain until next SYSCON packet is received
which gives us the possibility to communicate with SYSCON on Linux easily :)
 
==Test==
 
'''1. Before sending SYSCON packet''':
<pre>
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8cff4)) status=noxfer | hexdump -C
 
00000000  01 18 01 18                                      |....|
00000004
 
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff0)) status=noxfer | hexdump -C
 
00000000  01 18 01 18                                      |....|
00000004
 
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8cff0)) status=noxfer | hexdump -C
 
00000000  01 24 01 24                                      |.$.$|
00000004
 
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff4)) status=noxfer | hexdump -C
 
00000000  01 24 01 24                                      |.$.$|
00000004
</pre>
 
'''2. SYSCON packet was sent by using ps3dm_scm read_eprom.'''
 
'''3. After sending SYSCON packet''':
<pre>
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8cff4)) status=noxfer | hexdump -C
 
00000000  01 19 01 19                                      |....|
00000004
 
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff0)) status=noxfer | hexdump -C
 
00000000  01 19 01 19                                      |....|
00000004
 
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8cff0)) status=noxfer | hexdump -C
 
00000000  01 25 01 25                                      |.%.%|
00000004
 
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff4)) status=noxfer | hexdump -C
 
00000000  01 25 01 25                                      |.%.%|
00000004
</pre>
 
'''4. Received Header'''
 
<pre>
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=16 skip=$((0x8c000)) status=noxfer | hexdump -C
 
00000000  14 01 00 00 00 00 80 15  00 00 00 03 00 05 00 05  |................|
00000010
 
</pre>
 
'''5. Received Body'''
 
<pre>
root@debian-hdd:~# dd if=/dev/ps3sbmmio bs=1 count=8 skip=$((0x8c010)) status=noxfer | hexdump -C
 
00000000  00 00 c7 01 ff 00 00 00                          |..Ç.ÿ...|
00000008
</pre>
 
==Examples==
 
===Get RTC===
 
* Used by LV1 call '''lv1_get_rtc'''
* Communication with SYSCON 4
 
Request:
<pre>
# write packet
 
# echo "0: 13 01 0000 0000 8014 00000004 0001 0001 33 00 00 00 0000ff1f" | xxd -c256 -r | \
      dd of=/dev/ps3sbmmio bs=1 seek=$((0x8d000)) status=noxfer
 
# dump packet counter
 
# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff0)) status=noxfer | hexdump -C
 
00000000  00 c0 00 c0                                      |.À.À|
00000004
 
# increment packet counter
 
echo "0: 00c1 00c1" | xxd -c256 -r | dd of=/dev/ps3sbmmio bs=1 seek=$((0x8dff0)) status=noxfer
 
# kick packet
 
# echo "0: 00000001" | xxd -c256 -r | dd of=/dev/ps3sbmmio bs=1 seek=$((0x8e100)) status=noxfer
 
</pre>
 
Response:
 
<pre>
# dump packet counter
 
# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff0)) status=noxfer | hexdump -C
 
00000000  00 c1 00 c1                                      |.Á.Á|
00000004
 
# dump response packet
 
# dd if=/dev/ps3sbmmio bs=1 count=24 skip=$((0x8c000)) status=noxfer | hexdump -C
 
00000000  13 01 00 00 00 00 80 14  00 00 00 04 00 08 00 08  |................|
00000010  00 00 00 00 15 af 47 6b                          |.....¯Gk|
00000018
</pre>
 
===Ring Buzzer===
 
* Used by System Manager
* Communication with SYSCON 1
 
Request:
 
<pre>
# write packet
 
# echo "0: 16 01 1620 0000 804d 00000001 0008 0008 20 29 0a 00 000001b6 0000fdcb" | xxd -c256 -r | \
      dd of=/dev/ps3sbmmio bs=1 seek=$((0x8d000)) status=noxfer
 
# dump packet counter
 
# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff0)) status=noxfer | hexdump -C
 
00000000  00 c0 00 c0                                      |.À.À|
00000004
 
# increment packet counter
 
echo "0: 00c1 00c1" | xxd -c256 -r | dd of=/dev/ps3sbmmio bs=1 seek=$((0x8dff0)) status=noxfer
 
# kick packet
 
# echo "0: 00000001" | xxd -c256 -r | dd of=/dev/ps3sbmmio bs=1 seek=$((0x8e100)) status=noxfer
 
# you should hear a beep
 
</pre>
 
Response:
 
<pre>
# dump packet counter
 
# dd if=/dev/ps3sbmmio bs=1 count=4 skip=$((0x8dff0)) status=noxfer | hexdump -C
 
00000000  00 c1 00 c1                                      |.Á.Á|
00000004
 
# dump response packet
 
# dd if=/dev/ps3sbmmio bs=1 count=24 skip=$((0x8c000)) status=noxfer | hexdump -C
00000000  16 01 16 20 00 00 80 4d  00 00 00 01 00 01 00 01  |... ...M........|
00000010  00 00 00 00 00 00 fe e3                          |......þã|
00000018
 
</pre>
 
=Isolation=
Crossreference: [http://wiki.gitbrew.org/wikibrew/PS3:HvReverseEngineering#Isolation gitbrew.org::Isolation] <br />
 
==Running Isolated SPE Modules On OtherOS++ Linux==
 
* spp_verifier is a kernel module which shows you how to run isolated SPE modules on OtherOS++ Linux.
* It decrypts default.spp profile
* Tested on 3.41 and 3.55.
* You can modify it easily to run other SPE modules.
 
<pre>
root@debian-hdd:/home/glevand/spp_verifier# cat spp_verifier_355.self > /proc/spp_verifier/spu
root@debian-hdd:/home/glevand/spp_verifier# cat default_355.spp > /proc/spp_verifier/profile
root@debian-hdd:/home/glevand/spp_verifier# echo 1 > /proc/spp_verifier/run
root@debian-hdd:/home/glevand/spp_verifier# cat /proc/spp_verifier/debug
 
PPE id (0x0000000000000001) VAS id (0x0000000000000002)
lv1_construct_logical_spe (0x00000000)
SPE id (0x000000000000002b)
lv1_undocumented_function_209 (0x00000000)
shadow execution status (0x0000000000000002)
lv1_get_spe_interrupt_status(1) (0x00000000)
interrupt status 1 (0x0000000000000000)
sleep
shadow execution status (0x0000000000000002)
lv1_get_spe_interrupt_status(1) (0x00000000)
interrupt status 1 (0x0000000000000001)
ea (0xc000000002920000) esid (0xc000000008000000) vsid (0x0000408f92c94500)
lv1_undocumented_function_62 (0x00000000)
lv1_clear_spe_interrupt_status(1) (0x00000000)
lv1_undocumented_function_168 (0x00000000)
sleep
shadow execution status (0x0000000000000007)
lv1_get_spe_interrupt_status(1) (0x00000000)
interrupt status 1 (0x0000000000000000)
lv1_get_spe_interrupt_status(2) (0x00000000)
interrupt status 2 (0x0000000000000000)
out interrupt mbox (0x0000000000000002)
out interrupt mbox (0x0000000000000002)
lv1_undocumented_function_167 (0x00000000)
lv1_clear_spe_interrupt_status (0x00000000)
lv1_undocumented_function_200 (0x00000000)
sleep
shadow execution status (0x000000000000000b)
lv1_get_spe_interrupt_status(1) (0x00000000)
interrupt status 1 (0x0000000000000000)
shadow execution status (0x000000000000000b)
problem status (0x01000082)
lv1_destruct_logical_spe (0x00000000)
 
root@debian-hdd:/home/glevand/spp_verifier# hexdump -C /proc/spp_verifier/profile | less
...
...
00000200  00 02 00 05 00 00 20 a0  00 00 00 01 00 03 00 00  |......  ........|
00000210  00 00 00 00 00 00 00 01  00 00 00 0e 00 00 00 00  |................|
00000220  00 00 02 88 00 00 00 01  10 70 00 00 01 00 00 01  |.........p......|
00000230  00 00 00 00 00 00 00 00  53 43 45 5f 43 45 4c 4c  |........SCE_CELL|
00000240  4f 53 5f 50 4d 45 00 00  00 00 00 00 00 00 00 00  |OS_PME..........|
00000250  00 00 00 00 00 00 00 00  00 00 00 06 00 00 02 50  |...............P|
00000260  10 70 00 00 01 00 00 01  2f 66 6c 68 2f 6f 73 2f  |.p....../flh/os/|
00000270  74 68 69 73 5f 69 73 5f  64 75 6d 6d 79 00 00 00  |this_is_dummy...|
00000280  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
...
...
</pre>
 
==Using metldr On OtherOS++ Linux==
 
* spp_verifier_direct is a kernel module which shows you how to run isolated SPE modules on OtherOS++ Linux by using metldr directly.
* It decrypts default.spp profile.
* Tested on 3.41 and 3.55.
* You can modify it easily to run other SPE modules.
 
<pre>
root@debian-hdd:/home/glevand/spp_verifier_direct# insmod ./spp_verifier_direct.ko
root@debian-hdd:/home/glevand/spp_verifier_direct# cat metldr > /proc/spp_verifier_direct/metldr
root@debian-hdd:/home/glevand/spp_verifier_direct# cat isoldr_355 > /proc/spp_verifier_direct/isoldr
root@debian-hdd:/home/glevand/spp_verifier_direct# cat RL_FOR_PROGRAM_355.img > /proc/spp_verifier_direct/rvkprg
root@debian-hdd:/home/glevand/spp_verifier_direct# cat EID0 > /proc/spp_verifier_direct/eid0
root@debian-hdd:/home/glevand/spp_verifier_direct# cat spp_verifier_355.self > /proc/spp_verifier_direct/spu
root@debian-hdd:/home/glevand/spp_verifier_direct# cat default_355.spp > /proc/spp_verifier_direct/profile
root@debian-hdd:/home/glevand/spp_verifier_direct# echo 1 > /proc/spp_verifier_direct/run
root@debian-hdd:/home/glevand/spp_verifier_direct# cat /proc/spp_verifier_direct/debug
PPE id (0x0000000000000001) VAS id (0x0000000000000002)
lv1_construct_logical_spe (0x00000000)
SPE id (0x0000000000000033)
lv1_enable_logical_spe (0x00000000)
lv1_set_spe_interrupt_mask(0) (0x00000000)
lv1_set_spe_interrupt_mask(1) (0x00000000)
lv1_set_spe_interrupt_mask(2) (0x00000000)
lv1_set_spe_privilege_state_area_1_register (0x00000000)
ea (0xc000000002680000) esid (0xc000000008000000) vsid (0x0000408f92c94500)
lv1_get_spe_interrupt_status(0) (0x00000000)
lv1_get_spe_interrupt_status(1) (0x00000000)
lv1_get_spe_interrupt_status(2) (0x00000000)
sleep
lv1_get_spe_interrupt_status(0) (0x00000000)
lv1_get_spe_interrupt_status(1) (0x00000000)
lv1_get_spe_interrupt_status(2) (0x00000000)
out interrupt mbox (0x0000000000000001)
lv1_clear_spe_interrupt_status(2) (0x00000000)
transferring EID0, ldr args and revoke list to LS
waiting until MFC transfers are finished
MFC transfers done
out mbox (0x00000001)
sleep
lv1_get_spe_interrupt_status(0) (0x00000000)
lv1_get_spe_interrupt_status(1) (0x00000000)
lv1_get_spe_interrupt_status(2) (0x00000000)
out interrupt mbox (0x0000000000000002)
lv1_clear_spe_interrupt_status(2) (0x00000000)
out mbox (0x00000002)
lv1_clear_spe_interrupt_status(2) (0x00000000)
sleep
lv1_get_spe_interrupt_status(0) (0x00000000)
lv1_get_spe_interrupt_status(1) (0x00000000)
lv1_get_spe_interrupt_status(2) (0x00000000)
problem status (0x01000082)
lv1_destruct_logical_spe (0x00000000)
 
root@debian-hdd:/home/glevand/spp_verifier_direct# hexdump -C /proc/spp_verifier_direct/profile | less
...
...
00000200  00 02 00 05 00 00 20 a0  00 00 00 01 00 03 00 00  |......  ........|
00000210  00 00 00 00 00 00 00 01  00 00 00 0e 00 00 00 00  |................|
00000220  00 00 02 88 00 00 00 01  10 70 00 00 01 00 00 01  |.........p......|
00000230  00 00 00 00 00 00 00 00  53 43 45 5f 43 45 4c 4c  |........SCE_CELL|
00000240  4f 53 5f 50 4d 45 00 00  00 00 00 00 00 00 00 00  |OS_PME..........|
00000250  00 00 00 00 00 00 00 00  00 00 00 06 00 00 02 50  |...............P|
00000260  10 70 00 00 01 00 00 01  2f 66 6c 68 2f 6f 73 2f  |.p....../flh/os/|
00000270  74 68 69 73 5f 69 73 5f  64 75 6d 6d 79 00 00 00  |this_is_dummy...|
00000280  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
...
...
</pre>
 
= Gelic Device =
Crossreference: [http://wiki.gitbrew.org/index.php/PS3:HvReverseEngineering#Gelic_Device gitbrew.org::Gelic Device] <br />
 
==sys.hw.config==
 
* Value of the loader parameter "sys.hw.config" controls if Gelic WLAN is enabled or not.
* Value of the loader parameter "sys.hw.config" is stored in the repository node "sys.hw.config" too.
* If bit '''0x40000''' is set then LV1 allows using Gelic WLAN interface from LV2.
* Value on my PS3 slim '''0x4e00ffff0a03bc3c''' with Gelic WLAN interface disabled. As you can see, the Gelic WLAN interface is disabled and LV1 doesn't allow using of LV1 calls 196 and 195. It returns LV1_CONDITION_NOT_SATISFIED.
* GameOS checks bit '''0x40000''' of the repository node "sys.hw.config" during network initialization and if it's set then LV2 initializes Gelic WLAN interface.
* Check your "sys.hw.config" repository node and if bit '''0x40000''' is set then you are a lucky owner of a PS3 model with the old WLAN interface.
* '''On newer PS3 models, GameOS uses USB interface to communicate with WLAN.'''
* On PS3 models, where bit '''0x40000''' is NOT set in "sys.hw.config" repository node, the new USB interface is used.
 
''Note:[http://www.ps3devwiki.com/index.php?title=Wifi old vs. new]: Old == CECHA up to CECHK, New == CECHL and later''
 
== Control Interface ==
 
HV calls 195 and 196 are used by GameOS to send commands to Gelic device directly.
 
=== lv1_undocumented_function_196 ===
 
==== Parameters ====
 
r3 - LPAR address of data buffer
 
r4 - size of data buffer
 
r5 - must be 0
 
=== lv1_undocumented_function_195 ===
 
==== Parameters ====
 
r3 - command (16 bit value)
 
r4 - command data size
 
r5 - must be 0
 
=== Data Buffer ===
 
* Data Buffer passed to HV call 196 is divided into 2 parts.
* The first 0x800 bytes are for sending and receiving command data
* The remaining 0x800 bytes are for event notification.
 
=== Command Data Buffer ===
 
* Every command data sent to Gelic device contains header of size '''0xC'''
* After the header follows the command data
* After the Gelic device processed the command, it notifies LV2 kernel about command completion by sending an interrupt
 
==== Header ====
 
* Size is '''0xc'''.
* Byte order is little-endian.
* Header data in a request command buffer is always all 0s.
 
0x0 - command = request command + 1 (2 bytes)
 
0x4 - result, 0x1 - success ??? 0x2 - buffer too small ??? (2 bytes)
 
0x6 - body size (2 bytes)
 
=== Event Data Buffer ===
 
* The Gelic device notifies LV2 kernel by sending an interrupt when new events are available
* Event Data Buffer has 8 bytes header
* The remaining bytes are divided into event slots
* Each event slot is of size 64 bytes
* Events are in little-endian format
 
==== Header ====
 
offset 0x0 - GET index (4 bytes)
 
offset 0x4 - PUT index (4 bytes)
 
* GET index is updated by Gelic driver. The Gelic driver reads events beginning with the event slot at index GET.
* PUT index is the index of event entry where next Gelic event will be stored by the Gelic device.
* If GET index is equal to PUT index then there are no Gelic events.
 
=== GameOS ===
 
* LV2 syscall 726 sends Gelic device command and blocks until a response from the Gelic device arrives
* LV2 kernel uses this LV1 interface to send commands to Gelic device internally too, probably for wireless controllers and Wake On WLAN.
* The system call 726 is used heavily by VSH.
 
==== Parameters ====
 
r3 - command (16 bits)
 
r4 - effective address of command data buffer
 
r5 - size of command data buffer
 
=== Commands ===
 
====Unknown (0x1)====
 
* Used by VSH.
* Command buffer size is '''0x10'''.
* Used in AP mode.
* Enables AP mode ???
 
====Get AP SSID (0x3)====
 
* Command buffer is of size '''0x30'''.
* Returns SSID in AP mode.
 
offset 0xC - SSID (32 bytes)
 
====Set AP SSID (0x5)====
 
* Used by VSH.
* Command buffer is of size '''0x30'''.
* Sets SSID in AP mode.
 
offset 0xC - SSID (32 bytes)
 
====Get Channel (0xf)====
 
* Used by VSH.
* Command buffer is of size '''0x31'''.
* Data is returned from the device.
* Returns list of channels and active channel.
 
offset 0x2F - active channel (2 bytes)
 
====Set Channel (0x11)====
 
* Used by VSH.
* Command buffer size is '''0xd'''
* Valid channels: '''0 - 13'''. '''0''' means that the channel is selected '''automatically'''.
 
offset 0xC - channel (1 byte)
 
====Unknown (0x27)====
 
* Command buffer size is '''0xF'''.
 
====Set Antenna (0x29)====
 
* Command buffer size is '''0xe'''
 
offset 0xC - 0,1 or 2 (1 byte)
 
offset 0xD - 2 (1 byte)
 
====Set AP WEP Configuration (0x5b)====
 
* Used by VSH.
* Command buffer is of size '''0x56'''.
* Sets WEP security type and WEP key.
* Security types: 0 - none, 1 - wep64, 2 - wep128
 
offset 0xE - security mode: 0 - none, 1 - wep64, 2 - wep128 (1 byte)
 
offset 0x10 - WEP key (64 bytes)
 
====Unknown (0x61)====
 
* Used by VSH.
* Command buffer size is '''0xd'''
 
====Unknown (0x65)====
 
* Used by VSH.
* Command  uffer size is '''0xd'''.
* Used in AP mode.
 
====Get Eurus Firmware Version (0x99)====
 
* Used by VSH.
 
Here is the response on my PS3 Slim:
<pre>
00000000: 4a 55 50 49 54 45 52 2d 54 57 4f 2d 46 57 2d 32 |JUPITER-TWO-FW-2|
00000010: 30 2e 30 2e 31 32 2e 70 30 28 4a 61 6e 20 31 39 |0.0.12.p0(Jan 19|
00000020: 20 32 30 31 30 20 32 31 3a 32 30 3a 35 33 29 00 | 2010 21:20:53).|
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00      |..............  |
</pre>
 
====Get AP Operating Mode (0xb7)====
 
* Used by VSH.
* Command buffer size is '''0x10'''
* Returns AP operating mode (mixed, 11b or 11g).
 
offset 0xC - opmode: 0 - 11b, 1 - 11g, 2 - 11bg (4 bytes)
 
====Set AP Operating Mode (0xb9)====
 
* Used by VSH.
* Command buffer size is '''0x10'''
* Sets AP operating mode (mixed, 11b or 11g).
 
offset 0xC - opmode: 0 - 11b, 1 - 11g, 2 - 11bg (4 bytes)
 
====Unknown (0xc5)====
 
* Used by VSH.
* Command buffer size is '''0x10'''.
* Used in AP mode.
 
offset 0xC - ??? (4 bytes)
 
====Set AP WPA AKM Suite (0xc9)====
 
* Used by VSH.
* Command buffer size is '''0x11'''.
* Sets WPA AKM suite in AP mode.
 
offset 0xC - AKM suite (4 bytes)
 
====Set AP WPA Group Cipher Suite (0xcf)====
 
* Used by VSH.
* Command buffer size is '''0x10'''
* Used in AP + WPA mode.
 
offset 0xC - group cipher suite: group (4 bytes)
 
====Set AP WPA PSK Binary (0xd3)====
 
* Used by VSH.
* Command buffer size is '''0x4c'''
* Sets WPA PSK binary
 
offset 0xC - PSK (64 bytes)
 
====Set AP WPA Reauthentication Timeout (0xd5)====
 
* Used by VSH.
* Command buffer size is '''0x10'''
* Sets WPA Reauth timeout value in AP WPA mode.
* VSH uses 36000 as timeout.
 
offset 0xC - timeout value in seconds (2 bytes)
 
====Unknown (0x127)====
 
* Used by VSH.
* Command buffer size is '''0x10'''.
* Used in AP + WPA mode.
 
====Unknown (0x12b)====
 
* Used by VSH.
* Command buffer size is '''0x10'''.
* Used in AP + WPA mode.
 
====Set AP WPA PSK Passphrase (0x17d)====
 
* Used by VSH.
* Command buffer size is '''0x2D'''
 
offset 0xD - passphrase (32 bytes)
 
====Set AP WPA Pairwise Cipher Suite (0x1bf)====
 
* Used by VSH.
* Command buffer size is '''0x11'''
* Used in AP + WPA mode.
 
offset 0xC - pairwise cipher suite (4 bytes)
 
offset 0x10 - ??? (1 byte)
 
====Unknown (0x1d9)====
 
* Used by VSH.
* Command buffer size is '''0x10'''
 
====Unknown (0x1dd)====
 
* Used by VSH.
* Command buffer size is '''0xd'''
 
====Unknown (0x1ed)====
 
* Used by VSH.
* Command buffer is of size '''0x17'''.
* Rate control ???
 
====Get Eurus HW Revision (0x1fb)====
 
* Command buffer size is '''0x10'''.
 
====Associate (0x1001)====
 
* Used by VSH.
* Used by LV1 on FAT models.
* Command buffer size is '''0xd'''
* Data passed to Gelic device is all 0s
 
====Get Common Configuration (0x1003)====
 
* Used by VSH.
* Used by LV1 on FAT models.
* Command buffer size is '''0x18'''
* Data passed to Gelic device is all 0s
 
====Set Common Configuration (0x1005)====
 
* Used by VSH.
* Used by LV1 on FAT models.
* Command buffer size is '''0x18'''
* Hmm, VSH always removes QOS bit from capability, that means Jupiter doesn't support QOS ???
 
offset 0xC - BSS type: 0 - infrastructure, 1 - ???, 2 - adhoc (1 byte)
 
offset 0xD - authentication mode: 0 - open, 1 - shared key
 
offset 0xE - opmode: 0 - 11bg, 1 - 11b, 2 - 11g (1 byte)
 
offset 0xF - ??? (1 byte)
 
offset 0x10 - BSSID (6 bytes)
 
offset 0x16 - capability (2 bytes)
 
====Get WEP Configuration (0x1013)====
 
* Used by VSH.
* Used by LV1 on FAT models.
* Command buffer size is '''0x50'''
* Data passed to Gelic device is all 0s
 
====Set WEP Configuration (0x1015)====
 
* Used by VSH.
* Used by LV1 on FAT models.
* Command buffer size is '''0x50'''
 
====Get WPA Configuration (0x1017)====
 
* Used by VSH.
* Used by LV1 on FAT models.
* Command buffer size is '''0x5b'''
* Data passed to Gelic device is all 0s
 
====Set WPA Configuration (0x1019)====
 
* Used by VSH.
* Used by LV1 on FAT models.
* Command buffer size is '''0x5b'''
 
offset 0xE - security type: 0 - WPA, 1 - RSNA (1 byte)
 
offset 0xF - psk type: 0 - hex, 1 - bin (1 byte)
 
offset 0x10 - psk key: hex or bin (64 bytes)
 
offset 0x50 - group cipher suite: 0x0050f202 - WPA TKIP, 0x0050f204 - WPA AES, 0x000fac02 - RSNA TKIP, 0x000fac04 - RSNA CCMP (4 bytes)
 
offset 0x54 - pairwise cipher suite: 0x0050f202 - WPA TKIP, 0x0050f204 - WPA AES, 0x000fac02 - RSNA TKIP, 0x000fac04 - RSNA CCMP (4 bytes)
 
offset 0x58 - AKM suite: 0x0050f202 - WPA PSK, 0x000fac02 - RSNA PSK (4 bytes)
 
'''See IEEE 802.11 specification for more details about cipher/AKM suites
'''
 
802.11 spec: [http://standards.ieee.org/getieee802/download/802.11-2007.pdf]
 
====Unknown (0x1025)====
 
* Used by VSH.
* Command buffer size is '''0x10'''.
* Sets preamble type, something else ???
 
offset 0xC - preamble mode: 0 - short, 1 - long (1 byte)
 
====Unknown (0x1031)====
 
* Used by VSH.
* Command buffer size is '''0xe'''
 
====Get Scan Results (0x1033)====
 
* Used by VSH.
* Used by LV1 on FAT models.
* Command buffer size is '''0x5b0'''
* Data passed to Gelic device is all 0s
 
=====Scan Results=====
 
offset 0x0 - number of scan entries (1 byte)
 
offset 0x1 - array of scan entries
 
======Scan Entry======
 
offset 0x0 - size of this entry in bytes, this field is NOT included (2 bytes)
 
offset 0x2 - BSSID (6 bytes)
 
offset 0x8 - RSSI (1 byte)
 
offset 0x9 - timestamp (8 bytes)
 
offset 0x11 - beacon period (2 bytes)
 
offset 0x13 - capability (2 bytes)
 
offset 0x15 - information elements (see 802.11 specification)
 
====Start Scan (0x1035)====
 
* Used by VSH.
* Used by LV1 on FAT models.
* Command buffer size depends on size of channel list and ESSID string length
* Data passed to Gelic device contains channel list and ESSID string
* First '''0x16''' bytes in command data buffer are all 0s, then follows the channel list and after that ESSID
 
====Diassociate (0x1037)====
 
* Used by VSH.
* Used by LV1 on FAT models.
* Command buffer size is '''0xd'''
* Data passed to Gelic device is all 0s
 
====Get RSSI (0x103d)====
 
* Used by VSH.
* Used by LV1 on FAT models.
* Command buffer size is '''0x17'''
 
offset 0x10 - MAC address of node (6 bytes)
 
offset 0x16 - RSSI (1 byte)
 
====Get MAC Address (0x103f)====
 
* Command buffer size is '''0x13'''
 
offset 0xD - MAC address (6 bytes)
 
====Set MAC Address (0x1041)====
 
* Used by VSH.
* Used by LV1 too.
* Command buffer size is '''0x12'''
 
====Unknown (0x104d)====
 
* Used by VSH.
* Command buffer size is '''0xd'''.
 
offset 0xC - 0 - ???, 1 - ??? (1 byte)
 
====Unknown (0x104f)====
 
* Command buffer size is '''0xd'''.
* Returns 1 byte.
 
offset 0xC - 0 - ???, 1 - ??? (1 byte)
 
====Unknown (0x1051)====
 
* Used by VSH.
* Command buffer size is '''0x5b3'''.
* Returns '''0x5a7''' bytes.
 
offset 0xC - number of entries
 
offset 0x10 - entries (each entry is 0xd bytes)
 
====Unknown (0x1053)====
 
* Used by VSH.
* Command buffer size is '''0x70'''.
 
offset 0xC - ??? (4 bytes)
 
offset 0x10 - MAC address (6 bytes)
 
====Unknown (0x1059)====
 
* Used by VSH.
* Command buffer size is '''0x2a8'''.
 
====Unknown (0x105f)====
 
* Used by LV2.
 
====Get Zephyr HW Revision (0x1101)====
 
* Used by VSH.
* Not a Gelic device command, handled by LV2 kernel.
* LV2 uses LV1 call '''lv1_net_control(0x8000000000000002)'''
* Command buffer size is '''0x18'''.
 
====Get MAC Address List (0x1117)====
 
* Command buffer size is '''0xce'''.
* Returns several MAC addresses.
 
offset 0xC - number of MAC addresses (2 bytes)
 
offset 0xE - MAC addresses (6 * number of MAC addresses)
 
====Unknown (0x1133)====
 
* Used by VSH.
* Command buffer size is '''0x1A'''.
 
====Set WOL MAC Address Filter (0x1139)====
 
* Used by LV2 internally.
* Command buffer is of size '''0x28'''.
 
====Unknown (0x113b)====
 
* Used by LV2 internally.
* Command buffer size is '''0x20'''.
 
====Set WOL Multicast Address Filter (0x113d)====
 
* Used by LV2 internally.
* Command buffer is of size '''0x2c'''.
 
====Clear WOL Multicast Address Filter (0x113f)====
 
* Used by LV2 internally.
* Command buffer is of size '''0x28'''.
 
====Unknown (0x1141)====
 
* Used by LV2 internally.
* Command buffer is of size 0x12.
 
====Clear WOL Address Filter (0x1143)====
 
* Used by LV2 internally.
* Command buffer size is '''0x2c'''.
 
====Unknown (0x114b)====
 
* Used by LV2 internally.
 
====Set WOL Magic Packet Mode (0x1155)====
 
* Used by LV2 internally.
* Command buffer is of size '''0x10'''.
* Enables/Disables WOL magic packet.
 
offset 0xC - mode: 0 - disable, 1 - enable (4 bytes)
 
====Unknown (0x1157)====
 
* Used by LV2 internally.
* Command buffer size is '''0x10'''.
 
====Set WOL Multicast Address Filter Mode (0x1159)====
 
* Used by LV2 internally.
* Command buffer size is '''0x10'''.
* WOL function
 
offset 0xC - mode: 0 - disable, 1 - enable (4 bytes)
 
====Set Unicast Address Filter (0x115b)====
 
* Used by LV2 internally.
* Command buffer is of size '''0x6a'''.
* This command should be used to set proper MAC address or else device won't be able to receive packets destined to its own MAC address
 
offset 0xC - ??? (2 bytes)
 
offset 0xE - ??? (2 bytes)
 
offset 0x10 - MAC address (6 bytes)
 
====Clear Unicast Address Filter (0x115d)====
 
* Used by LV2 internally.
* Command buffer size is '''0x6a'''.
 
====Get Unicast Address Filter (0x115f)====
 
* Used by LV2 internally.
* Command buffer is of size '''0x6a'''.
 
====Set Multicast Address Filter (0x1161)====
 
* Used by LV2 internally.
* Command buffer size is '''0x2c'''.
 
====Clear Multicast Address Filter (0x1163)====
 
* Used by LV2 internally.
* Command buffer size is '''0x2c'''
* To clear all multicast addresses send command with all 0s.
 
offset 0xC - multicast address filter (4 * 8 bytes)
 
====Get Multicast Address Filter (0x1165)====
 
* Used by LV2 internally.
* Command buffer is of size '''0x2c'''.
 
====Set WOL Address Filter (0x1167)====
 
* Used by LV2 internally.
* Command buffer size is '''0x70'''.
 
====Set WOL Address Filter Mode (0x116d)====
 
* Used by LV2 internally.
* Command buffer size is '''0x10'''.
* Enables/Disables WOL address matching
 
offset 0xC - mode: 0 - disable, 1 - enable (4 bytes)
 
====Set Unicast Address Filter Mode (0x116f)====
 
* Used by LV2 internally.
* Command buffer size is '''0x10'''.
 
offset 0xC - mode: 0 - disable, 1 - enable (4 bytes)
 
====Get Device Status (0xfffb)====
 
* Used by VSH.
* Not a Gelic device command, handled by LV2 kernel.
* Returned data size in command buffer is '''0x10'''.
 
====Unknown (0xfffc)====
 
* Used by VSH.
* Not a Gelic device command, handled by LV2 kernel.
* LV2 uses LV1 call '''lv1_net_control(0x1 /* bus id */, 0x0 /* dev id */, 0x6 /* get channel info command */, 0x4, 0x0, 0x0)'''
 
====Get Channel Information (0xfffd)====
 
* Used by VSH.
* Not a Gelic device command, handled by LV2 kernel.
* LV2 uses LV1 call '''lv1_net_control(0x1 /* bus id */, 0x0 /* dev id */, 0x6 /* get channel info command */, 0x0, 0x0, 0x0)'''
* Returns supported WLAN channels
 
====Set Response Timeout (0xfffe)====
 
* Used by VSH.
* Not a Gelic device command, handled by LV2 kernel.
* Sets timeout value which is used to wait for a response from Gelic device.
* Typical value used by VSH is '''0x989680'''.
* Command buffer size is '''0x14'''.
 
====Unknown (0xffff)====
 
* Used by VSH.
* Not a Gelic device command, handled by LV2 kernel.
* Returns 0x10 bytes in command buffer.
* Returns gelic device state ???
 
=== Events ===
 
<pre>
struct ps3_eurus_event_hdr {
__le32 type;
__le32 id;
__le32 timestamp;
__le32 payload_length;
__le32 unknown;
} __packed;
 
struct ps3_eurus_event {
struct ps3_eurus_event_hdr hdr;
u8 payload[44];
} __packed;
</pre>
 
====Event Type 0x00000040====
 
{| class="wikitable"
|-
! Id !! Description
|-
| 0x00000001 || Deauthenticated
|}
 
====Event Type 0x00000080====
 
{| class="wikitable"
|-
! Id !! Description
|-
| 0x00000001 || Beacon Lost
|-
| 0x00000002 || Connected
|-
| 0x00000004 || Scan Completed
|-
| 0x00000020 || WPA Connected
|-
| 0x00000040 || WPA Error (MIC Error)
|}
 
====Event Type 0x80000000====
 
{| class="wikitable"
|-
! Id !! Description
|-
| 0x00000001 || Device Ready
|}
 
== Enabling WLAN Gelic On FAT ==
 
Linux kernel doesn't use Gelic Device Control Interface like GameOS does it.
To get WLAN working on Linux booted with GameOS rights, we have to disable
Gelic Device Control Interface first because it's enabled for GameOS by default.
 
The value of repository node "ios.net.eurus.lpar" controls access to Gelic Device Control Interface.
It's a bitmap. The position of a bit corresponds to LPAR id. During GameOS booting, HV process 9 (System Manager) sets bit at postion 2 to 1 which means enable Gelic Device Control Interface for LPAR 2.
 
To disable Gelic Device Control Interface on Linux, first unload Gelic device driver, then set
value of repository node "ios.net.eurus.lpar" to 0 and load Gelic device driver again. After that WLAN should work again but only on FATs.
 
For PS3 Slim we need a new Linux Gelic device driver which uses Gelic Device Control Interface directly.
 
 
==USB WLAN Interface (Codename Jupiter 2)==
 
* On new PS3 models, WLAN interface is USB.
* '''Good news is that  the same commands are used as with LV1 calls 196 and 195'''.
* There are 2 wireless devices: Station and AP.
* I got WLAN scan working.
 
===Endpoints===
 
* LV2 uses 3 USB endpoints of interface 3,4 and 5 to communicate with WLAN.
* Endpoints EP5 IN/OUT, EP6 IN/OUT and EP7 IN/OUT.
* '''WLAN commands''' are sent to endpoint '''EP5 OUT''' with '''interrupt transfers'''.
* '''WLAN events''' and '''WLAN command responses''' are received on endpoint '''EP5 IN''' with '''interrupt transfers'''.
* LV2 opens a USB communication pipe to endpoint EP5 IN and EP5 OUT.
* In my LV2 3.55 dump, pipe to EP5 IN has id '''0x2''' and pipe to EP5 OUT has id '''0x3'''. Array of all opened USB pipes is at address '''0x80000000004bd000''' in my LV2 3.55 dump.
* EP5 is used to send commands to Jupiter and receive events from it.
* EP6 is used to send/receive data packets to/from the 1st WLAN device.
* EP7 is used to send/receive data packets to/from the 2nd WLAN device.
* '''lsusb is buggy on big-endian arch and shows some fields with bytes swapped !!!'''
 
<pre>
Bus 002 Device 002: ID 054c:036f Sony Corp.
Device Descriptor:
  bLength                18
  bDescriptorType        1
  bcdUSB              2.00
  bDeviceClass          224 Wireless
  bDeviceSubClass        1 Radio Frequency
  bDeviceProtocol        1 Bluetooth
  bMaxPacketSize0        64
  idVendor          0x054c Sony Corp.
  idProduct          0x036f
  bcdDevice          20.12
  iManufacturer          1
  iProduct                2
  iSerial                0
  bNumConfigurations      1
    Interface Descriptor:
      bLength                9
      bDescriptorType        4
      bInterfaceNumber        3
      bAlternateSetting      0
      bNumEndpoints          2
      bInterfaceClass      255 Vendor Specific Class
      bInterfaceSubClass      2
      bInterfaceProtocol      1
      iInterface              0
      Endpoint Descriptor:
        bLength                7
        bDescriptorType        5
        bEndpointAddress    0x85  EP 5 IN
        bmAttributes            3
          Transfer Type            Interrupt
          Synch Type              None
          Usage Type              Data
        wMaxPacketSize    0x4000  1x 0 bytes
        bInterval              1
      Endpoint Descriptor:
        bLength                7
        bDescriptorType        5
        bEndpointAddress    0x05  EP 5 OUT
        bmAttributes            3
          Transfer Type            Interrupt
          Synch Type              None
          Usage Type              Data
        wMaxPacketSize    0x4000  1x 0 bytes
        bInterval              1
    Interface Descriptor:
      bLength                9
      bDescriptorType        4
      bInterfaceNumber        4
      bAlternateSetting      0
      bNumEndpoints          2
      bInterfaceClass      255 Vendor Specific Class
      bInterfaceSubClass      2
      bInterfaceProtocol      2
      iInterface              0
      Endpoint Descriptor:
        bLength                7
        bDescriptorType        5
        bEndpointAddress    0x86  EP 6 IN
        bmAttributes            2
          Transfer Type            Bulk
          Synch Type              None
          Usage Type              Data
        wMaxPacketSize    0x0002  1x 2 bytes
        bInterval              0
      Endpoint Descriptor:
        bLength                7
        bDescriptorType        5
        bEndpointAddress    0x06  EP 6 OUT
        bmAttributes            2
          Transfer Type            Bulk
          Synch Type              None
          Usage Type              Data
        wMaxPacketSize    0x0002  1x 2 bytes
        bInterval            255
    Interface Descriptor:
      bLength                9
      bDescriptorType        4
      bInterfaceNumber        5
      bAlternateSetting      0
      bNumEndpoints          2
      bInterfaceClass      255 Vendor Specific Class
      bInterfaceSubClass      2
      bInterfaceProtocol      3
      iInterface              0
      Endpoint Descriptor:
        bLength                7
        bDescriptorType        5
        bEndpointAddress    0x87  EP 7 IN
        bmAttributes            2
          Transfer Type            Bulk
          Synch Type              None
          Usage Type              Data
        wMaxPacketSize    0x0002  1x 2 bytes
        bInterval              0
      Endpoint Descriptor:
        bLength                7
        bDescriptorType        5
        bEndpointAddress    0x07  EP 7 OUT
        bmAttributes            2
          Transfer Type            Bulk
          Synch Type              None
          Usage Type              Data
        wMaxPacketSize    0x0002  1x 2 bytes
        bInterval            255
</pre>
 
===Device Initialization===
 
* LV2 does 2 control transfers to EP0 during WLAN initialization
* First control transfer sends magic '''0x20''' data to device as '''CLEAR_FEATURE''' request.
* Second control transfer reads '''0x2''' bytes device status. On my PS3 slim, the status data is always '''0x2031''' if you send the right magic.
* Magic data sent in first control transfer is stored in LV2.
* '''If you send wrong magic, the first control transfer will fail !!!'''
* LV2 uses a state machine to initialize the Jupiter device. The state machine has 17 states.
 
==== Magic Data in Control Transfer ====
 
<pre>
unsigned char ps3_usb_wlan_magic_data[] = {
0x76, 0x4e, 0x4b, 0x07, 0x24, 0x42, 0x53, 0xfb, 0x5a, 0xc7, 0xcc, 0x1d, 0xae, 0x00, 0xc6, 0xd8,
0x14, 0x40, 0x61, 0x8b, 0x13, 0x17, 0x4d, 0x7c, 0x3b, 0xb6, 0x90, 0xb8, 0x6e, 0x8b, 0xbb, 0x1d,
};
</pre>
 
==== Initialization State Machine ====
 
* Implemented in LV2.
 
=====State 1=====
 
* Command '''0x114f''' is sent to WLAN device.
 
=====State 2=====
 
* Command '''0x1171''' is sent to WLAN device.
 
=====State 3=====
 
* LV2 waits for an event from WLAN device.
 
=====State 4=====
 
* Command '''0x116f''' is sent to WLAN device.
 
=====State 5=====
 
* Command '''0x115b''' is sent to WLAN device.
* Command data sent to WLAN device contains MAC address.
 
=====State 6=====
 
* Command '''0x1161''' is sent to WLAN device.
* Sets multicast address filter.
 
=====State 7=====
 
* Command '''0x110d''' is sent to WLAN device.
 
=====State 8=====
 
* Command '''0x1031''' is sent to WLAN device.
 
=====State 9=====
 
* Command '''0x1041''' is sent to WLAN device.
* Command data sent to WLAN device contains MAC address.
 
=====State 10=====
 
* Command '''0x29''' is sent to WLAN device.
* Sets antenna.
 
=====State 11=====
 
* Command '''0x110b''' is sent to WLAN device.
 
=====State 12=====
 
* Command '''0x1109''' is sent to WLAN device.
 
=====State 13=====
 
* Command '''0x207''' is sent to WLAN device.
 
=====State 14=====
 
* Command '''0x203''' is sent to WLAN device.
 
=====State 15=====
 
* Command '''0x105f''' is sent to WLAN device.
* Command data sent to WLAN device contains MAC address, channel info and region code.
 
=====State 16=====
 
* LV2 waits for an event from WLAN device.
 
=====State 17=====
 
* LV2 accepts commands sent by LV2 syscall 726.
 
===Test Program===
 
* Here is a small program which executes a WLAN scan.
* I used libusb.
 
====Source Code====
<pre>
 
/*
* PS3 USB WLAN
*
* Copyright (C) 2011 glevand ([email protected])
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published
* by the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
 
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <stdint.h>
#include <unistd.h>
#include <pthread.h>
 
#include <libusb-1.0/libusb.h>
 
#define USB_VENDOR_ID 0x054c /* $ONY */
#define USB_PRODUCT_ID 0x036f
#define USB_IFACE_NUMBER 3
 
#define USB_INTR_TRANSFER_EP5_IN_BUF_SIZE 0x800
#define USB_INTR_TRANSFER_EP5_OUT_BUF_SIZE 0x800
 
struct wlan_cmd_pkt_hdr {
uint8_t unknown1;
uint8_t unknown2;
uint8_t unknown3;
uint8_t unknown4;
uint16_t unknown5;
uint8_t res1[2];
uint16_t tag;
uint8_t res2[14];
} __attribute__ ((packed));
 
struct wlan_cmd_hdr {
uint16_t command;
uint16_t tag;
uint16_t status;
uint16_t payload_size;
uint8_t res[4];
} __attribute__ ((packed));
 
struct wlan_event_pkt_hdr {
uint8_t unknown1;
uint8_t unknown2;
uint8_t unknown3;
uint8_t event_count;
} __attribute__ ((packed));
 
static libusb_context *usb_ctx;
static libusb_device_handle *usb_dev_handle;
 
static struct libusb_transfer *usb_intr_transfer_ep5_in;
static unsigned char usb_intr_transfer_ep5_in_buf[USB_INTR_TRANSFER_EP5_IN_BUF_SIZE];
 
static unsigned char usb_intr_transfer_ep5_out_buf[USB_INTR_TRANSFER_EP5_OUT_BUF_SIZE];
 
static pthread_mutex_t usb_wlan_cmd_mutex;
static pthread_cond_t usb_wlan_cmd_cond;
static int volatile usb_wlan_cmd_busy;
static uint16_t usb_wlan_cmd;
static void *usb_wlan_cmd_data;
 
static int volatile usb_wlan_cmd_thread_done;
 
/*
* WLAN won't work without this magic !!!
*/
static unsigned char usb_magic_data[] = {
0x76, 0x4e, 0x4b, 0x07, 0x24, 0x42, 0x53, 0xfb, 0x5a, 0xc7, 0xcc, 0x1d, 0xae, 0x00, 0xc6, 0xd8,
0x14, 0x40, 0x61, 0x8b, 0x13, 0x17, 0x4d, 0x7c, 0x3b, 0xb6, 0x90, 0xb8, 0x6e, 0x8b, 0xbb, 0x1d,
};
 
static unsigned char my_mac_addr[] = {
0x00, 0x11, 0x22, 0x33, 0x44, 0x55,
};
 
/*
* hexdump
*/
static void hexdump(const unsigned char *data, unsigned int data_size)
{
int i, j;
 
for (i = 0; i < data_size; i += 16) {
fprintf(stdout, "%08x:", i);
 
for (j = 0; j < 16; j++) {
if (i + j < data_size) {
fprintf(stdout, " %02x", data[i + j]);
} else {
fprintf(stdout, "  ");
}
}
 
fprintf(stdout, " |");
 
for (j = 0; j < 16; j++) {
if (i + j < data_size) {
if (isprint(data[i + j]))
fprintf(stdout, "%c", data[i + j]);
else
fprintf(stdout, ".");
} else {
fprintf(stdout, " ");
}
}
 
fprintf(stdout, "|\n");
}
}
 
/*
* usb_handle_wlan_event
*/
static void usb_handle_wlan_event(struct wlan_event_pkt_hdr *wlan_event_pkt_hdr)
{
fprintf(stdout, "%s:%d: === got WLAN event ===\n", __func__, __LINE__);
 
/*
fprintf(stdout, "%s:%d: event packet header:\n", __func__, __LINE__);
fprintf(stdout, "%s:%d: unknown1 (0x%02x)\n", __func__, __LINE__,
wlan_event_pkt_hdr->unknown1);
fprintf(stdout, "%s:%d: unknown2 (0x%02x)\n", __func__, __LINE__,
wlan_event_pkt_hdr->unknown2);
fprintf(stdout, "%s:%d: unknown3 (0x%02x)\n", __func__, __LINE__,
wlan_event_pkt_hdr->unknown3);
*/
fprintf(stdout, "%s:%d: event_count (0x%02x)\n", __func__, __LINE__,
wlan_event_pkt_hdr->event_count);
 
hexdump((unsigned char *) (wlan_event_pkt_hdr + 1), wlan_event_pkt_hdr->event_count * 64);
}
 
/*
* usb_handle_wlan_cmd_response
*/
static void usb_handle_wlan_cmd_response(struct wlan_cmd_pkt_hdr *wlan_cmd_pkt_hdr)
{
struct wlan_cmd_hdr *wlan_cmd_hdr;
uint8_t *wlan_cmd_payload;
 
fprintf(stdout, "%s:%d: === got WLAN command response ===\n", __func__, __LINE__);
 
wlan_cmd_hdr = (struct wlan_cmd_hdr *) (wlan_cmd_pkt_hdr + 1);
wlan_cmd_payload = (uint8_t *) (wlan_cmd_hdr + 1);
 
/* convert all header fields to big-endian byte order !!! */
 
wlan_cmd_pkt_hdr->unknown5 = le16toh(wlan_cmd_pkt_hdr->unknown5);
wlan_cmd_pkt_hdr->tag = le16toh(wlan_cmd_pkt_hdr->tag); /* returned from request */
 
wlan_cmd_hdr->command = le16toh(wlan_cmd_hdr->command); /* request command + 1 */
wlan_cmd_hdr->tag = le16toh(wlan_cmd_hdr->tag); /* returned from request */
wlan_cmd_hdr->status = le16toh(wlan_cmd_hdr->status); /* 1 - success
  2 - invalid parameters ???
  3 - invalid command ??? */
wlan_cmd_hdr->payload_size = le16toh(wlan_cmd_hdr->payload_size); /* length of data that follows the header */
 
/*
fprintf(stdout, "%s:%d: command packet header:\n", __func__, __LINE__);
fprintf(stdout, "%s:%d: unknown1 (0x%02x)\n", __func__, __LINE__,
wlan_cmd_pkt_hdr->unknown1);
fprintf(stdout, "%s:%d: unknown2 (0x%02x)\n", __func__, __LINE__,
wlan_cmd_pkt_hdr->unknown2);
fprintf(stdout, "%s:%d: unknown3 (0x%02x)\n", __func__, __LINE__,
wlan_cmd_pkt_hdr->unknown3);
fprintf(stdout, "%s:%d: unknown4 (0x%02x)\n", __func__, __LINE__,
wlan_cmd_pkt_hdr->unknown4);
fprintf(stdout, "%s:%d: unknown5 (0x%04x)\n", __func__, __LINE__,
wlan_cmd_pkt_hdr->unknown5);
fprintf(stdout, "%s:%d: tag (0x%04x)\n", __func__, __LINE__,
wlan_cmd_pkt_hdr->tag);
*/
 
fprintf(stdout, "%s:%d: command header:\n", __func__, __LINE__);
fprintf(stdout, "%s:%d: command (0x%04x)\n", __func__, __LINE__,
wlan_cmd_hdr->command);
 
if ((usb_wlan_cmd + 1) != wlan_cmd_hdr->command)
fprintf(stdout, "%s:%d: ==> command does not match, got (0x%04x) expected (0x%04x)\n",
__func__, __LINE__, wlan_cmd_hdr->command, usb_wlan_cmd + 1);
 
fprintf(stdout, "%s:%d: tag (0x%04x)\n", __func__, __LINE__,
wlan_cmd_hdr->tag);
fprintf(stdout, "%s:%d: status (0x%04x)\n", __func__, __LINE__,
wlan_cmd_hdr->status);
 
if (wlan_cmd_hdr->status != 0x1)
fprintf(stdout, "%s:%d: ==> command status != 0x1\n", __func__, __LINE__);
 
fprintf(stdout, "%s:%d: payload_size (0x%04x)\n", __func__, __LINE__,
wlan_cmd_hdr->payload_size);
 
fprintf(stdout, "%s:%d: command payload:\n", __func__, __LINE__);
 
hexdump(wlan_cmd_payload, wlan_cmd_hdr->payload_size);
 
memcpy(usb_wlan_cmd_data, wlan_cmd_payload, wlan_cmd_hdr->payload_size);
 
pthread_mutex_lock(&usb_wlan_cmd_mutex);
 
usb_wlan_cmd_busy = 0;
 
pthread_cond_signal(&usb_wlan_cmd_cond);
 
pthread_mutex_unlock(&usb_wlan_cmd_mutex);
}
 
/*
* usb_intr_transfer_ep5_in_cb
*/
static void usb_intr_transfer_ep5_in_cb(struct libusb_transfer *transfer)
{
struct wlan_cmd_pkt_hdr *wlan_cmd_pkt_hdr;
int error;
 
fprintf(stdout, "%s:%d: === got interrupt transfer ===\n", __func__, __LINE__);
 
fprintf(stdout, "%s:%d: transfer status (%d) length (%d)\n",
__func__, __LINE__, transfer->status, transfer->actual_length);
 
wlan_cmd_pkt_hdr = (struct wlan_cmd_pkt_hdr *) transfer->buffer;
 
if (wlan_cmd_pkt_hdr->unknown3 == 0x6)
usb_handle_wlan_cmd_response(wlan_cmd_pkt_hdr);
else if (wlan_cmd_pkt_hdr->unknown3 == 0x8)
usb_handle_wlan_event((struct wlan_event_pkt_hdr *) transfer->buffer);
else
fprintf(stdout, "%s:%d: got unknown packet (0x%02x)\n",
__func__, __LINE__, wlan_cmd_pkt_hdr->unknown3);
 
memset(usb_intr_transfer_ep5_in_buf, 0, sizeof(usb_intr_transfer_ep5_in_buf));
 
libusb_fill_interrupt_transfer(usb_intr_transfer_ep5_in, usb_dev_handle, LIBUSB_ENDPOINT_IN | 0x5,
usb_intr_transfer_ep5_in_buf, sizeof(usb_intr_transfer_ep5_in_buf),
usb_intr_transfer_ep5_in_cb, NULL, 0);
 
error = libusb_submit_transfer(usb_intr_transfer_ep5_in);
if (error) {
fprintf(stderr, "%s:%d: could not submit transfer (%d)\n",
__func__, __LINE__, error);
exit(1);
}
}
 
/*
* usb_intr_transfer_ep5_out_cb
*/
static void usb_intr_transfer_ep5_out_cb(struct libusb_transfer *transfer)
{
/*
fprintf(stdout, "%s:%d: sent interrupt transfer\n", __func__, __LINE__);
 
fprintf(stdout, "%s:%d: transfer status (%d)\n", __func__, __LINE__, transfer->status);
*/
 
libusb_free_transfer(transfer);
}
 
/*
* usb_wlan_cmd_send
*/
static int usb_wlan_cmd_send(uint16_t command, const uint8_t *data, unsigned int data_size)
{
struct wlan_cmd_pkt_hdr *wlan_cmd_pkt_hdr;
struct wlan_cmd_hdr *wlan_cmd_hdr;
uint8_t *wlan_cmd_payload;
struct libusb_transfer *transfer;
int error;
 
fprintf(stdout, "%s:%d: sending command (0x%04x) data size (0x%04x) command size (0x%04x)\n",
__func__, __LINE__, command, data_size, data_size + sizeof(struct wlan_cmd_hdr));
 
transfer = libusb_alloc_transfer(0);
if (!transfer) {
fprintf(stderr, "%s:%d: could not allocate transfer\n", __func__, __LINE__);
error = -1;
goto fail;
}
 
wlan_cmd_pkt_hdr = (struct wlan_cmd_pkt_hdr *) usb_intr_transfer_ep5_out_buf;
wlan_cmd_hdr = (struct wlan_cmd_hdr *) (wlan_cmd_pkt_hdr + 1);
wlan_cmd_payload = (uint8_t *) (wlan_cmd_hdr + 1);
 
wlan_cmd_pkt_hdr->unknown1 = 0x1;
wlan_cmd_pkt_hdr->unknown2 = 0x1;
wlan_cmd_pkt_hdr->unknown3 = 0x6;
wlan_cmd_pkt_hdr->unknown4 = 0x0;
wlan_cmd_pkt_hdr->unknown5 = 0x1;
wlan_cmd_pkt_hdr->tag = 0xf00d; /* returned in response */
 
wlan_cmd_hdr->command = command;
wlan_cmd_hdr->tag = 0xcafe; /* returned in response */
wlan_cmd_hdr->status = 0xa;
wlan_cmd_hdr->payload_size = data_size;
 
memcpy(wlan_cmd_payload, data, data_size);
 
usb_wlan_cmd = command;
usb_wlan_cmd_data = (void *) data;
 
libusb_fill_interrupt_transfer(transfer, usb_dev_handle, LIBUSB_ENDPOINT_OUT | 0x5,
usb_intr_transfer_ep5_out_buf,
sizeof(struct wlan_cmd_pkt_hdr) + sizeof(struct wlan_cmd_hdr) + wlan_cmd_hdr->payload_size,
usb_intr_transfer_ep5_out_cb, NULL, 0);
 
/* convert all header fields to little-endian byte order !!! */
 
wlan_cmd_pkt_hdr->unknown5 = htole16(wlan_cmd_pkt_hdr->unknown5);
wlan_cmd_pkt_hdr->tag = htole16(wlan_cmd_pkt_hdr->tag);
 
wlan_cmd_hdr->command = htole16(wlan_cmd_hdr->command);
wlan_cmd_hdr->tag = htole16(wlan_cmd_hdr->tag);
wlan_cmd_hdr->status = htole16(wlan_cmd_hdr->status);
wlan_cmd_hdr->payload_size = htole16(wlan_cmd_hdr->payload_size);
 
error = libusb_submit_transfer(transfer);
if (error) {
fprintf(stderr, "%s:%d: could not submit transfer (%d)\n",
__func__, __LINE__, error);
goto fail_free_transfer;
}
 
pthread_mutex_lock(&usb_wlan_cmd_mutex);
 
usb_wlan_cmd_busy = 1;
 
while (usb_wlan_cmd_busy)
pthread_cond_wait(&usb_wlan_cmd_cond, &usb_wlan_cmd_mutex);
 
pthread_mutex_unlock(&usb_wlan_cmd_mutex);
 
return 0;
 
fail_free_transfer:
 
libusb_free_transfer(transfer);
 
fail:
 
return error;
}
 
/*
* usb_wlan_cmd_start_scan
*/
static int usb_wlan_cmd_start_scan(void)
{
unsigned char data[256], *ptr;
unsigned int data_size;
 
memset(data, 0, sizeof(data));
 
ptr = data;
*ptr++ = 0x0;
*ptr++ = 0x1;
*ptr++ = 0x64;
*ptr++ = 0x0;
 
ptr = data + 0xa;
*ptr++ = 0x3;
 
*ptr++ = 13; /* number of channels */
*ptr++ = 1; /* channels */
*ptr++ = 2;
*ptr++ = 3;
*ptr++ = 4;
*ptr++ = 5;
*ptr++ = 6;
*ptr++ = 7;
*ptr++ = 8;
*ptr++ = 9;
*ptr++ = 10;
*ptr++ = 11;
*ptr++ = 12;
*ptr++ = 13;
 
data_size = ptr - data;
 
return usb_wlan_cmd_send(0x1035, data, data_size);
}
 
/*
* usb_wlan_cmd_get_scan_results
*/
static int usb_wlan_cmd_get_scan_results(void)
{
unsigned char data[1456];
unsigned int data_size;
 
memset(data, 0, sizeof(data));
 
data_size = sizeof(data);
 
return usb_wlan_cmd_send(0x1033, data, data_size);
}
 
/*
* usb_wlan_cmd_0x99
*/
static int usb_wlan_cmd_0x99(void)
{
unsigned char data[0x3e];
unsigned int data_size;
 
memset(data, 0, sizeof(data));
 
data_size = sizeof(data);
 
return usb_wlan_cmd_send(0x99, data, data_size);
}
 
/*
* usb_wlan_init
*/
static int usb_wlan_init(void)
{
unsigned char data[1456], *ptr;
unsigned int data_size;
int error;
 
/* state 0x1 */
 
memset(data, 0, sizeof(data));
 
data_size = 0x518;
 
error = usb_wlan_cmd_send(0x114f, data, data_size);
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x114f (%d)\n",
__func__, __LINE__, error);
return error;
}
 
sleep(2);
 
/* state 0x2 */
 
memset(data, 0, sizeof(data));
 
data_size = 0;
 
error = usb_wlan_cmd_send(0x1171, data, data_size);
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x1171 (%d)\n",
__func__, __LINE__, error);
return error;
}
 
sleep(2);
 
/* wait for a WLAN event */
 
/* state 0x4 */
 
memset(data, 0, sizeof(data));
 
ptr = data;
 
*ptr++ = 0x1;
 
data_size = 0x4;
 
error = usb_wlan_cmd_send(0x116f, data, data_size);
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x116f (%d)\n",
__func__, __LINE__, error);
return error;
}
 
sleep(2);
 
/* state 0x5 */
 
memset(data, 0, sizeof(data));
 
ptr = data;
 
*ptr++ = 0x1;
 
ptr = data + 0x4;
memcpy(ptr, my_mac_addr, sizeof(my_mac_addr));
 
data_size = 0x5e;
 
error = usb_wlan_cmd_send(0x115b, data, data_size);
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x115b (%d)\n",
__func__, __LINE__, error);
return error;
}
 
sleep(2);
 
/* state 0x6 */
 
memset(data, 0, sizeof(data));
 
ptr = data + 0x1c;
 
*ptr++ = 0x20;
 
data_size = 0x20;
 
error = usb_wlan_cmd_send(0x1161, data, data_size);
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x1161 (%d)\n",
__func__, __LINE__, error);
return error;
}
 
sleep(2);
 
memset(data, 0, sizeof(data));
 
ptr = data + 0xc;
memset(ptr, 0xff, 7 * 4);
 
data_size = 0x80;
 
error = usb_wlan_cmd_send(0x110d, data, data_size);
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x110d (%d)\n",
__func__, __LINE__, error);
return error;
}
 
sleep(2);
 
memset(data, 0, sizeof(data));
 
data_size = 0x2;
 
error = usb_wlan_cmd_send(0x1031, data, data_size);
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x1031 (%d)\n",
__func__, __LINE__, error);
return error;
}
 
sleep(2);
 
memset(data, 0, sizeof(data));
 
ptr = data;
memcpy(ptr, my_mac_addr, sizeof(my_mac_addr));
 
data_size = 0x6;
 
error = usb_wlan_cmd_send(0x1041, data, data_size);
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x1041 (%d)\n",
__func__, __LINE__, error);
return error;
}
 
sleep(2);
 
/* state 0xa */
 
memset(data, 0, sizeof(data));
 
ptr = data;
 
*ptr++ = 0x2;
*ptr++ = 0x2;
 
data_size = 0x2;
 
error = usb_wlan_cmd_send(0x29, data, data_size);
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x29 (%d)\n",
__func__, __LINE__, error);
return error;
}
 
sleep(2);
 
memset(data, 0, sizeof(data));
 
ptr = data;
 
*ptr++ = 0x1;
 
ptr = data + 8;
 
*ptr++ = 0x20;
 
data_size = 0xc;
 
error = usb_wlan_cmd_send(0x110b, data, data_size);
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x110b (%d)\n",
__func__, __LINE__, error);
return error;
}
 
sleep(2);
 
memset(data, 0, sizeof(data));
 
ptr = data;
 
*ptr++ = 0x1;
 
ptr = data + 0x4;
 
*ptr++ = 0x15;
*ptr++ = 0x27;
 
*ptr++ = 0x12;
*ptr++ = 0x0;
 
*ptr++ = 0x6;
*ptr++ = 0x0;
 
ptr = data + 0xc;
 
*ptr++ = 0x9;
*ptr++ = 0x0;
*ptr++ = 0x1;
 
ptr = data + 0x10;
 
*ptr++ = 0xff;
*ptr++ = 0xff;
*ptr++ = 0xff;
*ptr++ = 0xff;
*ptr++ = 0xff;
*ptr++ = 0xff;
 
data_size = 0x16;
 
error = usb_wlan_cmd_send(0x1109, data, data_size);
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x1109 (%d)\n",
__func__, __LINE__, error);
return error;
}
 
sleep(2);
 
memset(data, 0, sizeof(data));
 
ptr = data;
 
*ptr++ = 0x1;
 
data_size = 0x4;
 
error = usb_wlan_cmd_send(0x207, data, data_size);
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x207 (%d)\n",
__func__, __LINE__, error);
return error;
}
 
sleep(2);
 
memset(data, 0, sizeof(data));
 
ptr = data;
 
*ptr++ = 0x4;
 
data_size = 0x4;
 
error = usb_wlan_cmd_send(0x203, data, data_size);
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x203 (%d)\n",
__func__, __LINE__, error);
return error;
}
 
sleep(2);
 
/* state 0xf */
 
memset(data, 0, sizeof(data));
 
ptr = data;
 
*ptr++ = 0xff;
*ptr++ = 0x1f;
 
memcpy(ptr, my_mac_addr, sizeof(my_mac_addr));
 
ptr = data + 0x8;
 
*ptr++ = 0x2;
*ptr++ = 0x2;
 
data_size = 0xa;
 
error = usb_wlan_cmd_send(0x105f, data, data_size);
if (error) {
fprintf(stderr, "%s:%d: could not send command 0x105f (%d)\n",
__func__, __LINE__, error);
return error;
}
 
return 0;
}
 
/*
* usb_wlan_cmd_thread
*/
static void *usb_wlan_cmd_thread(void *arg)
{
int error;
 
error = usb_wlan_init();
if (error) {
fprintf(stderr, "%s:%d: could not initialize device (%d)\n",
__func__, __LINE__, error);
goto done;
}
 
sleep(5);
 
error = usb_wlan_cmd_0x99();
if (error) {
fprintf(stderr, "%s:%d: could not start scanning (%d)\n",
__func__, __LINE__, error);
goto done;
}
 
error = usb_wlan_cmd_start_scan();
if (error) {
fprintf(stderr, "%s:%d: could not start scanning (%d)\n",
__func__, __LINE__, error);
goto done;
}
 
sleep(10);
 
error = usb_wlan_cmd_get_scan_results();
if (error) {
fprintf(stderr, "%s:%d: could not get scan results (%d)\n",
__func__, __LINE__, error);
goto done;
}
 
sleep(10);
 
done:
 
usb_wlan_cmd_thread_done = 1;
 
return NULL;
}
 
/*
* main
*/
int main(int argc, char **argv)
{
unsigned char buf[256];
pthread_t tid;
struct timeval tv;
int error;
 
pthread_mutex_init(&usb_wlan_cmd_mutex, NULL);
pthread_cond_init(&usb_wlan_cmd_cond, NULL);
 
error = libusb_init(&usb_ctx);
if (error) {
fprintf(stderr, "%s:%d: libusb_init failed (%d)\n", __func__, __LINE__, error);
exit(1);
}
 
libusb_set_debug(usb_ctx, 5);
 
usb_dev_handle = libusb_open_device_with_vid_pid(usb_ctx, USB_VENDOR_ID, USB_PRODUCT_ID);
if (!usb_dev_handle) {
fprintf(stderr, "%s:%d: could not open device\n", __func__, __LINE__);
exit(1);
}
 
if(libusb_kernel_driver_active(usb_dev_handle, USB_IFACE_NUMBER)) {
fprintf(stdout, "%s:%d: kernel driver is attached\n", __func__, __LINE__);
 
error = libusb_detach_kernel_driver(usb_dev_handle, USB_IFACE_NUMBER);
if (error) {
fprintf(stderr, "%s:%d: could not detach kernel driver (%d)\n",
__func__, __LINE__, error);
exit(1);
}
 
fprintf(stdout, "%s:%d: kernel driver dettached\n", __func__, __LINE__);
}
 
error = libusb_claim_interface(usb_dev_handle, USB_IFACE_NUMBER);
if (error) {
fprintf(stderr, "%s:%d: could not claim interface (%d)\n",
__func__, __LINE__, error);
exit(1);
}
 
error = libusb_control_transfer(usb_dev_handle, 0x40, 0x1, 0x9, 0x0,
usb_magic_data, sizeof(usb_magic_data), 0);
if (error < 0) {
fprintf(stderr, "%s:%d: could not do control transfer (%d)\n",
__func__, __LINE__, error);
exit(1);
}
 
fprintf(stdout, "%s:%d: number of bytes transferred (%d)\n", __func__, __LINE__, error);
 
error = libusb_control_transfer(usb_dev_handle, 0xc0, 0x0, 0x2, 0x0, buf, 2, 0);
if (error < 0) {
fprintf(stderr, "%s:%d: could not do control transfer (%d)\n",
__func__, __LINE__, error);
exit(1);
}
 
fprintf(stdout, "%s:%d: number of bytes received (%d)\n", __func__, __LINE__, error);
 
fprintf(stdout, "%s:%d: 0x%02x 0x%02x\n", __func__, __LINE__, buf[0], buf[1]);
 
usb_intr_transfer_ep5_in = libusb_alloc_transfer(0);
if (!usb_intr_transfer_ep5_in) {
fprintf(stderr, "%s:%d: could not allocate transfer\n", __func__, __LINE__);
exit(1);
}
 
memset(usb_intr_transfer_ep5_in_buf, 0, sizeof(usb_intr_transfer_ep5_in_buf));
 
libusb_fill_interrupt_transfer(usb_intr_transfer_ep5_in, usb_dev_handle, LIBUSB_ENDPOINT_IN | 0x5,
usb_intr_transfer_ep5_in_buf, sizeof(usb_intr_transfer_ep5_in_buf),
usb_intr_transfer_ep5_in_cb, NULL, 0);
 
error = libusb_submit_transfer(usb_intr_transfer_ep5_in);
if (error) {
fprintf(stderr, "%s:%d: could not submit transfer (%d)\n",
__func__, __LINE__, error);
exit(1);
}
 
error = pthread_create(&tid, NULL, usb_wlan_cmd_thread, NULL);
if (error) {
fprintf(stderr, "%s:%d: could not create WLAN command thread (%d)\n",
__func__, __LINE__, error);
exit(1);
}
 
while (!usb_wlan_cmd_thread_done) {
tv.tv_sec = 1;
tv.tv_usec = 0;
 
error = libusb_handle_events_timeout(usb_ctx, &tv);
if (error) {
fprintf(stderr, "%s:%d: could not handle events (%d)\n",
__func__, __LINE__, error);
exit(1);
}
}
 
libusb_free_transfer(usb_intr_transfer_ep5_in);
 
error = libusb_release_interface(usb_dev_handle, USB_IFACE_NUMBER);
if (error)
fprintf(stderr, "%s:%d: could not release interface (%d)\n",
__func__, __LINE__, error);
 
libusb_close(usb_dev_handle);
 
libusb_exit(usb_ctx);
 
exit(0);
}
</pre>
 
====Output====
 
<pre>
glevand@debian-hdd:~/ps3_usb_wlan$ sudo ./ps3_usb_wlan
sudo: unable to resolve host debian-hdd
main:824: number of bytes transferred (32)
main:833: number of bytes received (2)
main:835: 0x20 0x31
usb_wlan_cmd_send:288: sending command (0x114f) data size (0x0518) command size (0x0524)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (36)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x1150)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0006)
usb_handle_wlan_cmd_response:205: ==> command status != 0x1
usb_handle_wlan_cmd_response:207: payload_size (0x0000)
usb_handle_wlan_cmd_response:210: command payload:
usb_wlan_cmd_send:288: sending command (0x1171) data size (0x0000) command size (0x000c)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (36)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x1172)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0000)
usb_handle_wlan_cmd_response:210: command payload:
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (68)
usb_handle_wlan_event:133: === got WLAN event ===
usb_handle_wlan_event:144: event_count (0x01)
00000000: 00 04 00 00 10 00 00 00 3c 22 02 00 00 00 00 00 |........<"......|
00000010: fc 90 02 c0 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000020: 13 00 00 20 00 00 00 00 00 00 00 00 00 00 00 00 |... ............|
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
usb_wlan_cmd_send:288: sending command (0x116f) data size (0x0004) command size (0x0010)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (36)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x1170)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0000)
usb_handle_wlan_cmd_response:210: command payload:
usb_wlan_cmd_send:288: sending command (0x115b) data size (0x005e) command size (0x006a)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (36)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x115c)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0000)
usb_handle_wlan_cmd_response:210: command payload:
usb_wlan_cmd_send:288: sending command (0x1161) data size (0x0020) command size (0x002c)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (36)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x1162)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0000)
usb_handle_wlan_cmd_response:210: command payload:
usb_wlan_cmd_send:288: sending command (0x110d) data size (0x0080) command size (0x008c)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (36)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x110e)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0000)
usb_handle_wlan_cmd_response:210: command payload:
usb_wlan_cmd_send:288: sending command (0x1031) data size (0x0002) command size (0x000e)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (38)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x1032)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0002)
usb_handle_wlan_cmd_response:210: command payload:
00000000: 00 00                                          |..              |
usb_wlan_cmd_send:288: sending command (0x1041) data size (0x0006) command size (0x0012)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (42)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x1042)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0006)
usb_handle_wlan_cmd_response:210: command payload:
00000000: 00 11 22 33 44 55                              |.."3DU          |
usb_wlan_cmd_send:288: sending command (0x0029) data size (0x0002) command size (0x000e)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (38)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x002a)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0002)
usb_handle_wlan_cmd_response:210: command payload:
00000000: 02 02                                          |..              |
usb_wlan_cmd_send:288: sending command (0x110b) data size (0x000c) command size (0x0018)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (48)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x110c)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x000c)
usb_handle_wlan_cmd_response:210: command payload:
00000000: 01 00 00 00 00 00 00 00 20 00 00 00            |........ ...    |
usb_wlan_cmd_send:288: sending command (0x1109) data size (0x0016) command size (0x0022)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (58)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x110a)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0016)
usb_handle_wlan_cmd_response:210: command payload:
00000000: 01 00 00 00 15 27 12 00 06 00 00 00 09 00 01 00 |.....'..........|
00000010: ff ff ff ff ff ff                              |......          |
usb_wlan_cmd_send:288: sending command (0x0207) data size (0x0004) command size (0x0010)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (40)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x0208)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0004)
usb_handle_wlan_cmd_response:210: command payload:
00000000: 01 00 00 00                                    |....            |
usb_wlan_cmd_send:288: sending command (0x0203) data size (0x0004) command size (0x0010)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (40)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x0204)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0004)
usb_handle_wlan_cmd_response:210: command payload:
00000000: 04 00 00 00                                    |....            |
usb_wlan_cmd_send:288: sending command (0x105f) data size (0x000a) command size (0x0016)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (36)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x1060)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0000)
usb_handle_wlan_cmd_response:210: command payload:
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (68)
usb_handle_wlan_event:133: === got WLAN event ===
usb_handle_wlan_event:144: event_count (0x01)
00000000: 80 00 00 00 00 10 00 00 9e 2b 02 00 04 00 00 00 |.........+......|
00000010: fc 90 02 c0 01 00 00 00 00 00 00 00 00 00 00 00 |................|
00000020: 13 00 00 20 00 00 00 00 00 00 00 00 00 00 00 00 |... ............|
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
usb_wlan_cmd_send:288: sending command (0x0099) data size (0x003e) command size (0x004a)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (98)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x009a)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x003e)
usb_handle_wlan_cmd_response:210: command payload:
00000000: 4a 55 50 49 54 45 52 2d 54 57 4f 2d 46 57 2d 32 |JUPITER-TWO-FW-2|
00000010: 30 2e 30 2e 31 32 2e 70 30 28 4a 61 6e 20 31 39 |0.0.12.p0(Jan 19|
00000020: 20 32 30 31 30 20 32 31 3a 32 30 3a 35 33 29 00 | 2010 21:20:53).|
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00      |..............  |
usb_wlan_cmd_send:288: sending command (0x1035) data size (0x0019) command size (0x0025)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (61)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x1036)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0019)
usb_handle_wlan_cmd_response:210: command payload:
00000000: 00 01 64 00 00 00 00 00 00 00 03 0d 01 02 03 04 |..d.............|
00000010: 05 06 07 08 09 0a 0b 0c 0d                      |.........      |
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (68)
usb_handle_wlan_event:133: === got WLAN event ===
usb_handle_wlan_event:144: event_count (0x01)
00000000: 80 00 00 00 04 00 00 00 96 2e 02 00 01 00 00 00 |................|
00000010: fc 90 02 c0 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000020: 13 00 00 20 00 00 00 00 00 00 00 00 00 00 00 00 |... ............|
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
usb_wlan_cmd_send:288: sending command (0x1033) data size (0x05b0) command size (0x05bc)
usb_intr_transfer_ep5_in_cb:233: === got interrupt transfer ===
usb_intr_transfer_ep5_in_cb:236: transfer status (0) length (1403)
usb_handle_wlan_cmd_response:158: === got WLAN command response ===
usb_handle_wlan_cmd_response:191: command header:
usb_handle_wlan_cmd_response:192: command (0x1034)
usb_handle_wlan_cmd_response:199: tag (0xcafe)
usb_handle_wlan_cmd_response:201: status (0x0001)
usb_handle_wlan_cmd_response:207: payload_size (0x0557)
usb_handle_wlan_cmd_response:210: command payload:
...
Here is scan output (removed by me)
...
</pre>
 
===Associate with AP===
 
* I got association with AP working.
* If  WLAN device is connected to an AP then the green LED is on, when data is received then the LED blinks.
* '''Data reception works finally !!!'''
 
====How to Associate with WPA AP====
* Set common configuration (command 0x1005)
* Set WPA configuration (command 0x1019)
* Set rate configuration (command 0x1ed)
* Associate (command 0x1001)
 
===Packet Reception===
 
* EP6 IN and EP7 IN endpoints are used for packet reception
* LV2 sends bulk transfers to both endpoints
* '''4''' bulk transfers are sent simultaneously for each enpoint
* Every bulk transfer is of size '''0x620'''
* '''Make sure you set multicast address filter properly or else you won't receive broadcast packets !!!'''
* Bulk transfers returned by the host controller which do not contain any data have size of '''0x10''' bytes else transfers contain valid Ethernet frame. All 802.11 related data is stripped by the WLAN Gelic device.
* '''Make sure you set right MAC address with command 0x115b else device won't be able to receive packets destined to its own MAC address !!!'''
 
====Test with libusb====
 
<pre>
usb_bulk_transfer_ep6_in_cb:318: === got data transfer ===
usb_bulk_transfer_ep6_in_cb:321: transfer status (0) length (98)
00000000: ff ff ff ff ff ff ?? ?? ?? ?? ?? ?? 08 00 45 00 |..............E.|
00000010: 00 54 00 00 40 00 40 01 b5 fe c0 a8 01 5b c0 a8 |.T..@.@......[..|
00000020: 01 ff 08 00 9c 69 0d 45 00 e2 4e 5d 34 26 00 07 |.....i.E..N]4&..|
00000030: df e1 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 |................|
00000040: 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 |.......... !"#$%|
00000050: 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 |&'()*+,-./012345|
00000060: 36 37                                          |67              |
usb_bulk_transfer_ep6_in_cb:318: === got data transfer ===
usb_bulk_transfer_ep6_in_cb:321: transfer status (0) length (16)
00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 |................|
usb_bulk_transfer_ep6_in_cb:318: === got data transfer ===
usb_bulk_transfer_ep6_in_cb:321: transfer status (0) length (16)
00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02 00 |................|
usb_bulk_transfer_ep6_in_cb:318: === got data transfer ===
usb_bulk_transfer_ep6_in_cb:321: transfer status (0) length (16)
00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 03 00 |................|
</pre>
 
====Multicast Address Filter====
 
* WLAN Gelic device supports hardware multicast address filtering
* Multicast address filtering is implemented with MAC address hashing and filter bitmap
* Filter bitmap is of size '''4 * 8''' bytes
* Multicast address filter is set with command '''0x1161'''
 
=====MAC Address Hash Function=====
 
* Used by LV2
 
<pre>
unsigned char hash(unsigned char *data, unsigned int size)
{
        unsigned int hash;
        int i, j;
 
        /*XXX: reverse data bits */
 
        hash = 0xffffffff;
 
        for (i = 0; i < size; i++) {
                hash = (((unsigned int) data[i]) << 24) ^ hash;
 
                for (j = 0; j < 8; j++) {
                        if (((int) hash) >= 0) {
                                hash = hash << 1;
                        } else {
                                hash = (hash << 1) ^ 0x04c10000;
                                hash = hash ^ 0x00001db7;
                        }
                }
        }
 
        hash = ((hash >> 24) & 0xf8) | (hash & 0x7);
 
        return hash & 0xff;
}
 
h = hash(mac_addr, 6);
v = 1 << (h & 0x1f);    /* word value in filter */
p = h >> 5;            /* word position in filter */
 
 
For broadcast address:
------------------------
 
v = 0x20000000
p = 7
 
That's why 0x20 is used with command 0x1161 !!! Without it the device won't deliver broadcast traffic.
Learned it the hard way, after 2 days of trying to get packet reception working :)
</pre>
 
===Packet Transmission===
 
* Tx packets are sent to EP6 OUT
* Tx packets are normal Ethernet frames, they don't contain any WLAN data or other headers
 
===AP Mode===
 
* I got AP mode working with security disabled for now
 
====AP Mode with Security Disabled====
 
* Set AP SSID (command 0x5)
* Set channel (command 0x11)
* Set AP opmode (command 0xb9)
* Configure rate control (command 0x1ed)
* Set AP WEP Configuration (command 0x5b, all 0s)
* Command 0x61 (param 0x0)
* Command 0xc5 (param 0x0)
* Command 0x1 (param 0x1)
* Command 0x1dd (param 0x2)
* Now green LED should be on
 
===ps3-jupiter Linux Drivers===
 
* ps3_jupiter.ko is the common part of STA and AP mode. It implements a command interface to WLAN Gelic device and disptaches events to STA and AP drivers.
* ps3_jupiter_sta.ko is a STA mode implementation.
* ps3_jupiter_ap.ko is a AP mode implementation.
* Simple scanning works already in STA mode (try it out with '''iwlist scan''')
* Packet reception works
* Packet transmission works
* '''WPA/WPA2''' fully working and usable with '''wpa_supplicant'''
 
 
'''Finally, after several weeks of hard programming and reversing, the WLAN driver ps3_jupiter_sta achieved the milestone where i can use it with WPA2 :) I actually use it currently with WPA2 on my PS3 slim. It works damn !!! Try it out and report bugs and problems to me.'''
 
====TODO====
 
* Implement association in STA mode (finished)
* Implement packet reception and transmission in STA mode (finished)
* Implement WEP support
* Implement AP mode
* Find out if Jupiter supports Monitor mode and if yes how to enable it
* Implement EURUS driver for PHATs (has many advantages over the old OtherOS approach, e.g. AP mode)
* Port to FreeBSD
 
==LV2 Network Stack==
 
* LV2 uses BSD network stack, e.g. '''struct mbuf'''
* It's almost identical to FreeBSD network stack.
 
===Network Device===
 
====IOCTLs====
 
=====Set Multicast Address Filter (0x81012000)=====
 
* Sets multicast address filter
* Uses LV1 calls '''lv1_net_remove_multicast_address''' and '''lv1_net_add_multicast_address''' for Ethernet Gelic device
* Uses Eurus commands '''0x1161''', '''0x1163''' and '''0x1165''' for WLAN Gelic device
 
=====Unknown (0x8101200E)=====
 
* Uses LV1 call '''lv1_net_control(0x8000000000000001)'''
 
=====Unknown (0x81040000)=====
 
* Uses LV1 call '''lv1_net_control(0x8, [0x0, 0x1 or 0x2])''' for Ethernet Gelic device
* Uses Eurus commands '''0x116F''', '''0x115D''' and '''0x115B''' for WLAN Gelic device
 
=====Enable/Disable WOL Magic Packet (0x81080000)=====
 
* Enables/Disables WOL Magic Packet
* Uses LV1 call '''lv1_net_control(0x5 /* GELIC_LV1_SET_WOL */, 0x1 /* GELIC_LV1_WOL_MAGIC_PACKET */)''' for Ethernet Gelic device
* Uses Eurus commands '''0x1139''' and '''0x1155''' for WLAN Gelic device
 
=====Unknown (0x81080001)=====
 
* Uses LV1 call '''lv1_net_control(0x5 /* GELIC_LV1_SET_WOL */, 0x2)''' for Ethernet Gelic device
* Uses Eurus commands '''0x113B''' and '''0x1157''' for WLAN Gelic device
 
=====Unknown (0x81080002)=====
 
* Uses LV1 call '''lv1_net_control(0x5 /* GELIC_LV1_SET_WOL */, 0x3)''' for Ethernet Gelic device
* Uses Eurus commands '''0x113D''' and '''0x1159''' for WLAN Gelic device
 
=====Unknown (0x81080003)=====
 
* Uses LV1 call '''lv1_net_control(0x5 /* GELIC_LV1_SET_WOL */, 0x4)''' for Ethernet Gelic device
* Uses Eurus command '''0x1161''' for WLAN Gelic device
 
=====Unknown (0x81080005)=====
 
* Uses LV1 call '''lv1_net_control(0x5 /* GELIC_LV1_SET_WOL */, 0x6 /* GELIC_LV1_WOL_ADD_MATCH_ADDR */)''' for Ethernet Gelic device
* Uses Eurus commands '''0x116D''' and '''0x1167''' for WLAN Gelic device
 
===Network Packet===
 
* LV2 network packet is represented by '''struct mbuf'''
 
=RSX=
Crossreference: [http://wiki.gitbrew.org/index.php/PS3:HvReverseEngineering#RSX gitbrew.org::RSX] <br />
 
==HV Calls==
 
===lv1_gpu_memory_allocate===
 
* LV1 supports 16 memory handles simultaneously.
* LV1 uses a bitmap to manage GPU VRAM.
* The bitmap is located in LV1 memory, 4 double words.
* Each bit corresponds to 1MB VRAM, 256bit = 256MB VRAM.
* 2MB at the top of VRAM are preallocated as you can see below.
 
<pre>
<memory handle> = 0x5a5a5a5a xor <memory handle index>
</pre>
 
====Memory Context Object====
 
offset 0x8 - memory handle (4 bytes)
 
offset 0x10 - VRAM LPAR start address (8 bytes)
 
offset 0x18 - VRAM LPAR end address (8 bytes)
 
====Test====
 
* The offset of bitmap could be different on your system because it's allocated dynamically.
* '''First 9MB of VRAM were allocated by ps3fb Linux driver.'''
 
Before allocating VRAM:
<pre>
glevand@debian-hdd:~$ sudo dd if=/dev/ps3ram bs=1 count=$((0x20)) skip=$((0x1f85b0)) | hexdump -C
00000000  00 00 00 00 00 00 01 ff  00 00 00 00 00 00 00 00  |.......ÿ........|
00000010  00 00 00 00 00 00 00 00  c0 00 00 00 00 00 00 00  |........À.......|
</pre>
 
After allocating 32 MB VRAM:
<pre>
glevand@debian-hdd:~$ sudo dd if=/dev/ps3ram bs=1 count=$((0x20)) skip=$((0x1f85b0)) | hexdump -C
00000000  00 00 01 ff ff ff ff ff  00 00 00 00 00 00 00 00  |...ÿÿÿÿÿ........|
00000010  00 00 00 00 00 00 00 00  c0 00 00 00 00 00 00 00  |........À.......|
</pre>
 
===lv1_gpu_context_allocate===
 
* Register %r4 is flags.
* '''Found the place in LV1 where LV1 sets IO page size for GART memory mapping. We could patch it and set to 4KB. That would make a lot of things easier for RSX developers on Linux.'''
* 1MB pages make RSX driver for Linux hard to implement because allocating 1Mb contiguous memory chunk on Linux is very very hard especially on a system with only 256MB and which was running for some time.
 
* LV1 supports 16 contexts simultaneously.
* LV1 has an array of context pointers.
* Each context has an index and a handle. The handle is derived from the index of the context.
 
<pre>
<context handle> = 0x55555555 xor <context index>
</pre>
 
* Thats why first created context will have handle 0x55555555.
 
====Context Object====
 
offset 0x8 - handle (4 bytes)
 
offset 0x48 - IO page size, valid range is 4kB, 64KB and 1MB (8 bytes)
 
====Flags====
 
'''0x2 - tells LV1 to use 64KB pages for GART memory mapping else LV1 uses 1MB pages'''
 
===lv1_gpu_context_iomap===
 
* Internally uses lv1_put_iopte function
* IO page size is the one set during lv1_gpu_context_allocate
* IO address space id is 0x0. IO id is 0x1.
 
===lv1_gpu_context_attribute===
 
====Attribute 0x1====
 
=====FIFO Command Buffer Setup=====
 
<pre>
lv1_gpu_context_attribute(context handle, 0x1, PUT offset, GET offset, 0x0, 0x0)
</pre>
 
====Attribute 0x101====
 
=====Set Flip Mode=====
 
<pre>
lv1_gpu_attribute(0x2, 0x1 /* head */, 0x0, 0x0)
lv1_gpu_context_attribute(context handle, 0x101, 0x1 /* head */, sync mode, 0x0, 0x0)
</pre>
 
====Attribute 0x104====
 
=====Set Display Buffer=====
 
<pre>
lv1_gpu_context_attribute(context handle, 0x104, id, width << 32 | height, pitch << 32 | offset, 0x0)
</pre>
 
====Attribute 0x10a====
 
=====Get Flip Status=====
 
* Reads a value at offset '''0x10C0 + 0x1 * 0x40''' in lpar_reports memory.
 
=====Reset Flip Status=====
 
<pre>
lv1_gpu_context_attribute(context handle, 0x10a, 0x1 /* id */, 0x7fffffff /* mask */, 0x0 /* value */, 0x0)
</pre>
 
* The LV1 call '''lv1_gpu_context_attribute(0x10a)''' accesses LPAR memory returned in '''lpar_reports''' by LV1 call '''lv1_gpu_context_allocate'''.
* Offset into lpar_reports is '''0x10C0 + id * 0x40 = 0x10C0 + 0x1 * 0x40'''.
* Why not access lpar_reports memory directly and use LV1 call instead ???
 
====Attribute 0x10b====
 
* '''This attribute is NOT available on 3.15 LV1 e.g. but on 3.41 it's implemented.'''
 
=====Set Cursor Position=====
 
<pre>
lv1_gpu_context_attribute(context handle, 0x10b, 0x1, 0x3, x, y)
</pre>
 
=====Set Cursor Image Offset=====
 
<pre>
lv1_gpu_context_attribute(context handle, 0x10b, 0x1, 0x2, offset, 0x0)
</pre>
 
====Attribute 0x10c====
 
* '''This attribute is NOT available on 3.15 LV1 e.g. but on 3.41 it's implemented.'''
 
=====Cursor Function 1=====
 
<pre>
lv1_gpu_context_attribute(context handle, 0x10c, 0x1, 0x1, 0x0, 0x0)
</pre>
 
=====Cursor Function 2=====
 
<pre>
lv1_gpu_context_attribute(context handle, 0x10c, 0x1, 0x2, 0x0, 0x0)
</pre>
 
====Attribute 0x10d====
 
* '''This attribute is NOT available on 3.15 LV1 e.g. but on 3.41 it's implemented.'''
 
=====Cursor Function 1=====
 
<pre>
lv1_gpu_context_attribute(context handle, 0x10d, 0x1, 0x1, 0x0, 0x0)
</pre>
 
====Attribute 0x300====
 
=====Set Tile=====
 
=====Set Invalidate Tile=====
 
=====Bind Tile=====
 
=====Unbind Tile=====
 
====Attribute 0x301====
 
=====Set Zcull=====
 
=====Bind Zcull=====
 
=====Unbind Zcull=====
 
====Attribute 0x601====
 
* Copies data from GART memory to VRAM.
* LV1 uses internally the FIFO command buffer passed by ps3fb driver with lv1_gpu_context_iomap.
 
FIFO commands:
<pre>
0x0004C184
0xFEED0001
 
0x0004C198
0x313371C3
 
0x00046300
0x0000000A
 
for ()
{
    for ()
    {
        0x0004630C
        <param>
 
        0x00046304
        <param>
 
        0x0024C2FC
        0x00000001
        0x00000003
        0x00000003
        <param1>
        <param2>
        <param3>
        <param4>
        0x00010000
        0x00010000
 
        0x0001C400
        <param1>
        <param2>
        <param3>
        0x00000000
    }
}
 
0x00040110
0x00000000
</pre>
 
==FIFO Command Buffer==
 
===FIFO Control Registers===
 
* LV1 call '''lv1_gpu_context_allocate''' returns LPAR address of FIFO control registers.
* You have to map it into Linux address space before you can access FIFO control registers.
* Value of PUT and GET registers are NOT expressed in Linux address space but in RSX address space. You have to convert it to RSX address space.
* GET register is read-only and is modified by RSX while it's processing FIFO commands.
 
===Kicking FIFO Command Buffer===
 
* As long as values of GET and PUT FIFO control registers are equal, RSX doesn't process commands from the FIFO command buffer.
* When the value of PUT register is not equal to the value of GET register, RSX starts processing commands in the FIFO command buffer.
* To execute FIFO commands, place them in the FIFO command buffer and change the value of PUT register.
 
===FIFO Setup Programs of emer_init.self===
 
* [[PS3:HvReverseEngineering:emer_init.self:Program 1]]
* [[PS3:HvReverseEngineering:emer_init.self:Program 2]]
* [[PS3:HvReverseEngineering:emer_init.self:Program 3]]
 
===FIFO Commands===
 
[[PS3:HvReverseEngineering:RSXFIFOCommands]]
 
===Example How to Use FIFO Command Buffer===
 
Here is a small Linux kernel module which shows you how to use FIFO command buffer on Linux.
 
* RSX allows to create multiple contexts.
* This kernel module should run without problems with '''ps3fb''' driver already running.
* Make sure you unload '''ps3vram''' driver before running this module because '''ps3vram''' allocates all available RSX memory for itself and because of this, '''lv1_gpu_memory_allocate''' will always fail.
* This kernel module lets the RSX execute a simple program which contains only NOP (No Operation) commands.
 
Download source code: [http://lol.notsoldierx.com/~glevand/ps3/linux/ps3rsx.tar.gz]
 
====Source Code====
 
<pre>
/*
* PS3 RSX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published
* by the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
 
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/delay.h>
 
#include <asm/abs_addr.h>
#include <asm/cell-regs.h>
#include <asm/lv1call.h>
#include <asm/ps3.h>
 
#define RSX_FIFO_CMD_BUF_SIZE (1 * 1024 * 1024)
 
#define RSX_MEM_SIZE (32 * 1024 * 1024)
 
#define RSX_GPU_IOIF (0x0e000000ul)
 
#define RSX_FIFO_CTRL_SIZE (4 * 1024)
 
struct rsx_fifo_ctrl {
u8 res[0x40];
u32 put;
u32 get;
};
 
static u32 *rsx_fifo_cmd_buf;
static u64 rsx_fifo_cmd_buf_lpar;
 
static u64 rsx_mem_handle, rsx_mem_lpar;
static u64 rsx_ctx_handle;
static u64 rsx_fifo_ctrl_lpar;
static u64 rsx_drv_info_lpar;
static u64 rsx_reports_lpar, rsx_reports_size;
 
static struct rsx_fifo_ctrl *rsx_fifo_ctrl;
 
/*
* FIFO program
*/
static u32 rsx_fifo_prg[] = {
0x00000000, /* nop */
0x00000000, /* nop */
0x00000000, /* nop */
};
 
/*
* ps3rsx_init
*/
static int __init ps3rsx_init(void)
{
unsigned long timeout;
int res;
 
/* FIFO command buffer must be allocated in XDR memory */
 
rsx_fifo_cmd_buf = kmalloc(RSX_FIFO_CMD_BUF_SIZE, GFP_KERNEL);
if (!rsx_fifo_cmd_buf) {
printk(KERN_INFO"could not allocate FIFO command buffer\n");
res = -ENOMEM;
goto fail;
}
 
res = lv1_gpu_memory_allocate(RSX_MEM_SIZE, 0, 0, 0, 0,
&rsx_mem_handle, &rsx_mem_lpar);
if (res) {
printk(KERN_INFO"lv1_gpu_memory_allocate failed (%d)\n", res);
res = -ENXIO;
goto fail_free_fifo_cmd_buf_mem;
}
 
res = lv1_gpu_context_allocate(rsx_mem_handle, 0,
&rsx_ctx_handle, &rsx_fifo_ctrl_lpar, &rsx_drv_info_lpar,
&rsx_reports_lpar, &rsx_reports_size);
if (res) {
printk(KERN_INFO"lv1_gpu_context_allocate failed (%d)\n", res);
res = -ENXIO;
goto fail_free_gpu_mem;
}
/* map FIFO command buffer into RSX address space */
 
rsx_fifo_cmd_buf_lpar = ps3_mm_phys_to_lpar(__pa(rsx_fifo_cmd_buf));
 
res = lv1_gpu_context_iomap(rsx_ctx_handle,
RSX_GPU_IOIF, rsx_fifo_cmd_buf_lpar, RSX_FIFO_CMD_BUF_SIZE,
CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_M);
if (res) {
printk(KERN_INFO"lv1_gpu_context_iomap failed (%d)\n", res);
res = -ENXIO;
goto fail_free_gpu_mem;
}
 
/* map RSX FIFO control registers */
 
rsx_fifo_ctrl = (struct rsx_fifo_ctrl *) ioremap(rsx_fifo_ctrl_lpar, RSX_FIFO_CTRL_SIZE);
if (!rsx_fifo_ctrl) {
printk(KERN_INFO"could not map FIFO control\n");
res = -ENXIO;
goto fail_free_gpu_mem;
}
 
/* PUT and GET offsets are in RSX address space */
 
res = lv1_gpu_context_attribute(rsx_ctx_handle, 0x1,
RSX_GPU_IOIF + 0x0 /* PUT offset */, RSX_GPU_IOIF + 0x0 /* GET offset */,
0x0, 0x0);
if (res) {
printk(KERN_INFO"lv1_gpu_context_attribute(0x1) failed (%d)\n", res);
res = -ENXIO;
goto fail_unmap_fifo_ctrl;
}
 
/* copy FIFO commands to FIFO command buffer */
 
memcpy(rsx_fifo_cmd_buf, rsx_fifo_prg, sizeof(rsx_fifo_prg));
 
printk(KERN_INFO"GET offset (0x%08x) PUT offset (0x%08x)\n", rsx_fifo_ctrl->get, rsx_fifo_ctrl->put);
 
/* kick FIFO */
 
rsx_fifo_ctrl->put = RSX_GPU_IOIF + sizeof(rsx_fifo_prg);
 
/* poll until RSX is done processing FIFO commands */
 
timeout = 100;
 
while (timeout--) {
if (rsx_fifo_ctrl->get == rsx_fifo_ctrl->put)
break;
 
msleep(1);
}
 
printk(KERN_INFO"GET offset (0x%08x) PUT offset (0x%08x)\n", rsx_fifo_ctrl->get, rsx_fifo_ctrl->put);
 
if (rsx_fifo_ctrl->get != rsx_fifo_ctrl->put) {
printk(KERN_INFO"FIFO command buffer timeout\n");
res = -ENXIO;
goto fail_unmap_fifo_ctrl;
}
 
return 0;
 
fail_unmap_fifo_ctrl:
 
iounmap(rsx_fifo_ctrl);
 
 
fail_free_gpu_mem:
 
lv1_gpu_memory_free(rsx_mem_handle);
 
fail_free_fifo_cmd_buf_mem:
 
kfree(rsx_fifo_cmd_buf);
 
fail:
 
return res;
}
 
/*
* ps3rsx_exit
*/
static void __exit ps3rsx_exit(void)
{
iounmap(rsx_fifo_ctrl);
 
lv1_gpu_context_iomap(rsx_ctx_handle, RSX_GPU_IOIF, rsx_fifo_cmd_buf_lpar,
RSX_FIFO_CMD_BUF_SIZE, CBE_IOPTE_M);
 
lv1_gpu_context_free(rsx_ctx_handle);
 
lv1_gpu_memory_free(rsx_mem_handle);
 
kfree(rsx_fifo_cmd_buf);
}
 
module_init(ps3rsx_init);
module_exit(ps3rsx_exit);
 
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("PS3 RSX");
MODULE_AUTHOR("glevand");
</pre>
 
====Test====
 
<pre>
# insmod ./ps3rsx.ko
# dmesg
 
GET offset (0x0e000000) PUT offset (0x0e000000)  # GET and PUT offsets before kicking FIFO
GET offset (0x0e00000c) PUT offset (0x0e00000c)  # GET and PUT offsets after kicking FIFO
</pre>
 
As you see, RSX processed our FIFO commands :)
 
==Linux Driver==
 
* '''DRI/DRM is the ONLY way to go !!! No hacks like kernel modules with tons of IOCTLs !!!'''
* First implement 2D acceleration and then add 3D support
* The driver consists of 2 parts: '''DDX driver''' for X11 (user space) and '''DRM driver''' for Linux Kernel (kernel space)
* First implement DRM driver and test it from user space without DDX and libdrm by talking to it directly
 
===DDX Driver===
 
* Use '''libdrm'''
* Use '''EXA API''' for 2D acceleration on X11 (or maybe use '''XAA API''')
* Use '''Kernel Mode Setting'''
 
===DRM Driver===
 
* Extend '''nouveau''' driver or create a new one ???
* '''Decision: create new DRM driver in order to learn how DRM framework in Linux kernel works and because we have to use LV1 calls to access RSX (and because it's a lot more fun to do it on my own). But use nouveau as an example for DRM driver. Maybe i should better use radeon DRM driver as an example beacuse it seems to be better designed and implemnted !!!'''
* The driver is very low level and allows direct access to almost all RSX funtions, e.g. FIFO buffer, to achieve maximum performance.
* All data buffers, e.g. vertices and textures, are managed by DRM framework (Linux kernel). To avoid copying from user to kernel space, the buffers will be mmaped into user space.
* Provides an interface to manage graphic objects in VRAM.
* Use '''TTM''' or '''GEM''' ??? TTM is used by radeon and nouvea drivers, so i guess we could use it too. GEM is for Intel chips.
* Extend '''libdrm''' library to support new DRM driver.
* Fences can be implemented with '''RSX REF Control Register'''
 
====Memory Management====
 
* Size of all memory objects must be multiple of the page size (4096 bytes) even if a smaller size is requested by user
* Nouveau driver uses IOCTL '''DRM_NOUVEAU_GEM_NEW''' to allocate memory objects in VRAM or GART. The IOCTL returns the handle of the newly allocated memory object.
* An example from Mesa how memory objects are used: [http://fxr.watson.org/fxr/source/external/bsd/drm/dist/libdrm/nouveau/nouveau_bo.c?v=NETBSD;im=10] [http://www.opensource.apple.com/source/X11libs/X11libs-60/mesa/Mesa-7.8.2/src/mesa/drivers/dri/nouveau/nouveau_bufferobj.c]
 
====Video RAM====
 
* VRAM is allocated once during context creating and cannot be changed during the whole life of the context.
* '''lv1_gpu_memory_allocate''' returns LPAR address of allocated VRAM which can be mapped into kernel address space.
* '''VRAM starts at offset 0x0 in GPU address space.'''
* VRAM heap management is necessary, use e.g. TTM (ttm_bo_init_mm).
* This memory type is used e.g. for vertices or textures.
* It should be mappable from user space in order to allow user to put data there.
* GameOS calls it '''Local Memory'''.
* VRAM can be mapped into kernel-space with '''ioremap'''.
* To map VRAM into user-space map it first into kernel-space with '''ioremap''' and then use '''remap_pfn_range''' to map into user-space.
* Use '''VM_IO''' flag for this kind of memory when mapping it into user-space.
* Mapping examples: [http://www.scs.ch/~frey/linux/memorymap.html] [http://www.cs.fsu.edu/~baker/devices/projects/antgeo/avnet_june19/pci_avnet.c]
 
====GART Memory====
 
* GART memory region is a memory region in System Memory but accessible by RSX through GART [http://dri.freedesktop.org/wiki/GART].
* GameOS calls it '''Main Memory'''.
* '''Problem: lv1_gpu_context_iomap supports ONLY 1MB and 64kB pages'''
* Size of system memory objects mapped into GPU address space should be either multiple of 1MB which means wasting lots of RAM and we don't have enough of it anyways. This solution is NOT suitable.
* Or place several GART memory objects into 1 MB page and map it. That would mean we have to use memory manager for each 1MB page.
* That means, we have to allocate 1MB page even if user requested a smaller memory region. Then initialize a heap manager for this 1MB page and return ONLY requested size. The following requests for GART memory regions can be satisfied from the previously allocated 1MB pages which still have enough free memory.
* FIFO command buffer is an example of a GART memory object which has to be mapped into GPU address space with lv1_gpu_context_iomap before it can be used by RSX.
* User allocates FIFO command buffer in GART address space, maps it into user space, write commands into it and then pushes it to DRM driver which maps it into RSX address space and CALLs it.
* '''TTM: TTM_PL_FLAG_TT for GART memory'''
* '''GameOS applications using GCM library map GART memory beginning at offset 0x10000000 or 0x20000000, just after where the whole VRAM is mapped.'''
* '''Don't use kmalloc for this type of memory. Use __get_free_pages and mark pages with flag VM_RESERVED before exporting it to user-space else they can be swapped out.'''
* TTM uses '''struct ttm_backend_func''' to call driver specific GART mapping functions. '''nouveau_sgdma.c''' handles GART memory mapping.
 
====CPU Memory====
 
* This type of memory cannot be accessed by RSX at all.
* Because this type of memory is not mapped into RSX address space through GART we don't need to allocate it in 1MB multiples.
* What do we need it for ???
 
====Mapping Memory Objects into Kernel-Space====
 
* Nouveau driver uses '''ttm_bo_kmap''' to map memory objects into kernel-space (see '''ttm_bo_util.c''').
* Nouveau driver uses '''ttm_bo_ioremap''' to map IO memory into kernel-space, e.g. VRAM or GPU registers (see '''ttm_bo_util.c''') which uses '''ioremp_wc''' or '''ioremp_nocache'''.
* TTM uses page-wise allocation for buffers. The buffers are contiguous ONLY in a single page. That has a huge advantage over allocating 1MB contiguous memory blocks in kernel space. It's far easier to allocate a single page in Linux kernel than 1MB memory chunk, especially on PS3 arch which has only 256MB.
* '''Problem: lv1_gpu_context_iomap allows ONLY 1MB pages. Use lv1_put_iopte ???'''. See [http://lwn.net/Articles/304188/], [http://lxr.free-electrons.com/source/arch/powerpc/platforms/ps3/mm.c?a=sh#L562],  [http://wiki.ps2dev.org/ps3:hypervisor:lv1_put_iopte ] and [http://wiki.ps2dev.org/ps3:hypervisor:lv1_gpu_context_iomap].
* Yes, we can use '''lv1_put_iopte''' instead of '''lv1_gpu_context_iomap'''. That would solve the problem with 1MB pages on Linux. Both LV1 calls use the same internal LV1 function to map memory pages.
* '''lv1_gpu_context_iomap uses IOAS_ID 0 and IOID 1.'''
* TTM allows to map a buffer multiple times. Mapping information is stored in '''struct ttm_bo_kmap_obj'''.
* '''To make single allocated pages look contiguous to kernel-space, TTM uses vmap'''.
* '''It is possible to use 64KB pages for GART mapping without patching LV1. To enable 4KB pages support we have to patch LV1.'''
* Tested with 64kB IO page size. It works fine.
 
====Mapping Memory Objects into User-Space====
 
* User-space programs should be able to allocate memory objects in VRAM or GART and map it with '''mmap syscall'''.
* See '''nouveau_ttm.c:nouveau_ttm_mmap'''.
* Mapping memory objects into user-space avoids copying of data between user/kernel spaces.
* Problem: how to identify memory objects ???
* '''libdrm''' uses handles which are returned by DRM kernel driver when a new memory object is created. The handle is passed to mmap syscall as parameter '''offset'''. DRM driver looks up the handle and identifies the appropriate memory object which is mapped into user-space then.
* Nouveau driver uses TTM framework to map memory objects into user-space. TTM doesn't map all pages owned by the memory object at once but installs '''VM operation fault''' which maps single pages on demand. It makes sense because user application rarely accesses all pages of the mapped memory object at once.
* To map memory objects located in VRAM we have to map it into kernel space first with '''ioremap'''.
 
====FIFO Command Buffer====
 
* Every context has its own one main FIFO command buffer which is NOT accessible directly by user space.
* User-space applications can allocate additional FIFO command buffers in GART memory space, map it into user space, store commands there and submit to DRM driver.
* Nouveau driver uses IOCTL '''NOUVEAU_GEM_PUSHBUF''' to execute FIFO command buffers. See '''nouveau_gem.c:nouveau_gem_ioctl_pushbuf'''.
* By user applications submitted FIFO command buffers are mapped by DRM driver into RSX address space first and then executed with CALL command.
* '''Problem: All references to graphics objects contained in FIFO command buffers must be expressed in RSX address space. How does user space know the right offsets of the referenced objects ???'''
* To solve the above problem, Nouveau driver uses relocations which are submitted to DRM driver together with FIFO command buffers. The DRM driver applies the specified relocations before executing the FIFO command buffer. See '''nouveau_gem.c:nouveau_gem_pushbuf_reloc_apply'''.
* Relocations contain memory object handles which they apply to. The DRM driver looks up the memory object by its handle and the memory objects contain GPU address space offsets.
 
=====Example=====
<pre>
      ---------------------------------------------------------------
      |                                                              |
      |                                                              |
    \|/    Main FIFO command buffer (one per allocated context)    |
------------------------------        ------------------------------------
|          |        |                    |          |          |          |
|    ...    |  CALL  |        ...        |  CALL  |  ...    |  JMP    |
|          |        |                    |          |          |          |
------------------------------        ------------------------------------
                |      /|\                    |        /|\
    -------------|        |                    |          |
    |              ------|            --------|          |
  \|/              |                  |              ---|
-----------------------                |              |
|      |      |      |              |              |
|  ...  |  ...  |  RET  |              |              |
|      |      |      |              |              |
-----------------------                |              |
  FIFO command buffer 1                |              |
  (allocated by user space)            \|/              |
                                    -----------------------
                                    |      |      |      |
                                    |  ...  |  ...  |  RET  |
                                    |      |      |      |
                                    -----------------------
                                      FIFO command buffer 2
                                    (allocated by user space)
</pre>
 
====Fences====
 
* Nouveau driver implements DRM fences with REF control register. See '''nouveau_fence.c:nouveau_fence_new'''.
* Newer Nvidia chips support semaphores. Nouveau driver uses semaphores for fences if they are supported.
* libgcm functions '''SetWriteCommandLabel''' and '''SetWaitLabel''' use semaphores.
* '''SetWriteCommandLabel''' releases semaphore and '''SetWaitLabel''' acquires semaphore.
* Semaphores are placed in VRAM. Nouveau driver creates a small VRAM heap for semaphores. See '''nouveau_fence.c:nouveau_fence_channel_init'''.
 
====IOCTLs====
 
=====Context Create=====
 
* Creates new RSX context
* Allocates VRAM and memory for FIFO buffer
* Needed VRAM size and FIFO buffer size must be known during context creation
 
=====Context Destroy=====
 
* Destroys previously allocated context
 
=====Context Attribute=====
 
* Changes context attributes
 
=====Graphic Object Creatre=====
 
* Create a graphic object either in VRAM or in XDR
* Used to create FIFO command buffers too (only in XDR of course because RSX supoorts FIFO command buffer in XDR only)
 
=====Graphic Object Destroy=====
 
* Frees previously created graphic object
 
=====FIFO Execute=====
 
* Allows user space applications to execute FIFO commands.
* To avoid copying of buffers allocated by user space to main FIFO command buffer use CALL and RET RSX FIFO commands to execute FIFO commands in buffers allocated by user space.
* Several FIFO command buffers can be submitted at once.
 
=====Framebuffer=====
 
* Kernel DRM driver has to implement a frame buffer driver too
* Nouvea driver allocates frame buffer in video RAM and maps it into kernel address space (see '''nouveau_fbcon.c:nouveau_fbcon_create'''). Current ps3fb Linux driver doesn't allocate frame buffer in vide RAM but in system RAM.
* Direct access to video RAM from kernel is very very slow but some of frame buffer functions in Nouvea driver are hardware accelerated. We could do it the same way on Linux and get a hardware accelerated frame buffer this way. Not sure why ps3fb authors didn't add hardware acceleration to frame buffer. The reason why it was not implemnted in ps3fb is because LV1 doesn't create 2D graphic objects needed for 2D hardware acceleration.
* '''lv1_gpu_allocate_memory''' returns LPAR address of video RAM allocated for the RSX context.
* Unfortunately '''lv1_gpu_context_allocate''' doesn't initialize 2D ROP objects but we could use 3D operations to implement 2D ROPs.
 
===libdrm===
 
* Add support for RSX DRM to '''libdrm'''
 
===Test Kernel Module and Program===
 
* I uploaded here a test kernel module and a test user application: [http://www.gitbrew.org/~glevand/ps3/linux/ps3rsx_kernel.tar.gz] and [http://www.gitbrew.org/~glevand/ps3/linux/ps3rsx_user.tar.gz]
* I used a similar technique for mapping GPU resources into user-space like Linux kernel DRM drivers do it, e.g. Nouveau. But of course everything is very simplified in comparison with Nouveau driver. All GPU resources are mapped to user-space with mmap and there is no data copying between user and kernel space, for performance reasons. Mapping GPU resources into user-space like this is more flexible than IOCTLs.
* '''The purpose of the kernel module and the user application is to test how RSX works, to test FIFO commands and other stuff i reversed from Lv2. It's NOT for end users.'''
* Before loading the kernel module make sure ps3vram kernel module is NOT loaded.
* I used 64kB IO pages for GPU context. 4kB IO page size would be definitely a lot better for that we have to patch LV1. I will add this patch to my ps3mfw tasks for LV1.
* Just load the kernel module and then run the user application.
* The user application maps all context resources and executes some simple FIFO commands, like JMP or SET REF.
* I will add more examples later.
* By default, the kernel module allocates 8MB VRAM, 64kB FIFO and 1MB GART memory. You can change it by using kernel module parameters.
* Take a look at how i made non-contiguous allocated GART memory look contiguous to GPU, kernel-space and user-space.
* The kernel module needs some IOCTLs, e.g. for setting display buffers or flip status, because it can be done ONLY with LV1 calls. I will add it later.
 
===Links===
 
* http://yangman.ca/blog/2009/10/linux-graphics-driver-stack-explained
* http://www.bitwiz.org.uk/s/how-dri-and-drm-work.html
* http://dri.sourceforge.net/doc/drm_low_level.html
* http://www.botchco.com/agd5f/?p=50
* http://webcvs.freedesktop.org/xorg/xc/programs/Xserver/hw/xfree86/doc/DESIGN?view=co
* http://www.x.org/wiki/ModularDevelopersGuide
* http://www.xfree86.org/current/DESIGN20.html
* http://nouveau.freedesktop.org/wiki/GraphicStackOverview
* http://cgit.freedesktop.org/nouveau/xf86-video-nouveau/tree/
* http://cgit.freedesktop.org/xorg/xserver/tree/hw/xfree86/doc/exa-driver.txt
* http://cgit.freedesktop.org/xorg/xserver/tree/hw/xfree86/xaa/XAA.HOWTO
* http://cgit.freedesktop.org/nouveau/linux-2.6/tree/drivers/gpu/drm
* http://kernel.org/doc/htmldocs/drm/drmInternals.html
* http://paginas.fe.up.pt/~mei04010/dri-architecture.pdf
* http://www.ecsl.cs.sunysb.edu/tr/TR222.pdf
* http://www.freesoftwaremagazine.com/columns/the_new_xorg_features
* http://www.freesoftwaremagazine.com/columns/xorgs_x_window_innovation_its_not_all_about_graphics#
* http://www.virtuousgeek.org/exa-driver.txt
* http://www.x.org/wiki/ttm
* http://nouveau.freedesktop.org/wiki/NvObjectTypes
* TTM: [http://lwn.net/Articles/257417/] [http://nouveau.freedesktop.org/wiki/TTMMemoryManager?action=AttachFile&do=get&target=mm.pdf]
* GEM: [http://lwn.net/Articles/283798/]
* TTM vs GEM: [http://lwn.net/Articles/283793/]
* OMAP DRM Driver: https://github.com/robclark/kernel-omap4/tree/omap_gpu-android/drivers/gpu/drm/omap
 
=BD Drive=
Crossreference: [http://wiki.gitbrew.org/wikibrew/PS3:HvReverseEngineering#BD_Drive gitbrew.org::HV#BD Drive] <br />
 
 
==Profile==
 
* BD profile can be read with '''GET PROFILE''' device command or SCSI command '''GET CONFIGURATION'''
 
===Profile Table===
 
{| class="wikitable"
|-
! Profile !! Description
|-
| 0x0 || No Current Profile
|-
| 0x2 || Removable Disk
|-
| 0x8 || CD-ROM
|-
| 0x9 || CD-R
|-
| 0xa || CD-RW
|-
| 0x10 || DVD-ROM
|-
| 0x11 || DVD-R Sequential recording
|-
| 0x12 || DVD-RAM
|-
| 0x13 || DVD-RW Restricted Overwrite
|-
| 0x14 || DVD-RW Sequential recording
|-
| 0x1a || DVD+RW
|-
| 0x1b || DVD+R
|-
| 0x40 || BD-ROM
|-
| 0x41 || BD-R Sequential Recording(TBD)
|-
| 0x42 || BD-R Random Recording(TBD)
|-
| 0x43 || BD-RE
|-
| 0x50 || PS1 CD-ROM
|-
| 0x60 || PS2 CD-ROM
|-
| 0x61 || PS2 DVD-ROM
|-
| 0x70 || PS3 DVD-ROM
|-
| 0x71 || PS3 BD-ROM
|-
| 0x10000 || CD-DA
|-
| 0x20000 || SACD
|-
| 0x100000 || Dual Layer (Parallel)
|-
| 0x200000 || Dual Layer (else Parallel)
|}
 
==Buffer==
 
* BD drive has several buffers associated with internal flash
* Buffer can be read and written with SCSI commands '''READ/WRITE BUFFER'''
* Writing buffer is enabled with SCSI command '''MODE SELECT 10''' first
 
===Buffer Table===
 
{| class="wikitable"
|-
! ID !! Size !! Description
|-
| 0x0 || 0x8000 || Used to transfer firmware to BD drive
|-
| 0x1 || 0x800 || Serial Flash
|-
| 0x2 || 0x60 || P-Block
|-
| 0x3 || 0x670 || S-Block
|-
| 0x4 || 0x8000 || Host Revocation List (HRL) Empty
|-
| 0x5 || 0x8000 || Host Revocation List (HRL) Current
|-
| 0x6 || 0x670 || S-Block
|-
| 0x7 || 0x8000 || Host Revocation List (HRL)
|}
 
===HRL Buffer===
 
* Size is 32KB just like AACS specifications prescribes (See AACS Common Specification 3.2.5.2 Host Revocation List Record)
* '''We could replace HRL with an older one in BD drive flash and restore revoked Host Certificates !!!'''
 
==Device Commands==
 
===Get Profile (0x11)===
 
* BD profile can be read with LV1 call '''lv1_send_storage_device_command''' and command '''0x11'''
* LV1 sends SCSI command '''GET CONFIGURATION''' to BD drive with '''requested type 0x0''', '''starting feature number 0x0''' and '''allocation length 0x8'''
* See SCSI command '''GET CONFIGURATION'''
 
===Auto Request Sense Mode On/Off (0x30)===
 
* LV1 expects a 4 byte value: 0x0 - On, 0x1 - Off
* can be get/set via GameOS sc0x25C/604: sys_storage_send_device_command(fd of bdvd,0x30,value,4,0,0 )
 
==SCSI Commands==
 
===Get Configuration===
 
Getting the profile of a BD movie disc:
<pre>
# sg_raw -r 0x8 /dev/sr0 46 02 00 00 00 00 00 00 08 00
SCSI Status: Good
 
Sense Information:
sense buffer empty
 
Received 8 bytes of data:
00    00 00 00 38 00 00 00 40                            ...8...@ 
 
# 0x40 means BD-ROM
</pre>
 
Getting the profile of a PS3 game disc:
<pre>
# sg_raw -r 0x8 /dev/sr0 46 02 00 00 00 00 00 00 08 00
SCSI Status: Good
 
Sense Information:
sense buffer empty
 
Received 8 bytes of data:
00    00 00 00 38 00 00 ff 71                            ...8...q
# 0x71 means PS3 BD-ROM
</pre>
 
===Get SS Key===
 
* By SCSI standard undocumented parameters are used
* '''SCSI Report Key''' command with '''key format 0x3''' and '''key class 0xe0'''
* 8 bytes are returned by BD drive
* Used by VSH
 
Test with PS3 game disc:
<pre>
# sg_raw -r 8 /dev/sr0 a4 00 00 00 00 00 00 e0 00 08 03 00
SCSI Status: Good
 
Sense Information:
sense buffer empty
 
Received 8 bytes of data:
00    00 06 00 00 00 00 00 04                            ........       
</pre>
 
===Eject Media===
 
<pre>
sg_raw /dev/sr0 0x1b 00 00 00 02 00
</pre>
 
===Load Media===
 
<pre>
sg_raw /dev/sr0 0x1b 00 00 00 03 00
</pre>
 
===Mode Select 10===
 
====Enable Buffer Write====
 
* Uses '''PF 0x1''', '''SP 0x0''' and '''parameter list length 0x10'''
* Uses the following parameter list: '''0x00 0x0e 0x00 0x00 0x00 0x00 0x00 0x00 0x2d 0x6 <buffer id> 0x00 0x00 0x00 0x00 0x00'''
* '''Enables writing to BD drive flash, e.g. to HRL buffer !!!'''
 
Test with sg3-utils which enables write to HRL buffer:
<pre>
sg_raw /dev/sr0 55 10 00 00 00 00 00 00 10 00 00 0e 00 00 00 00 00 00 2d 06 04 00 00 00 00 00
</pre>
 
===Write Buffer===
 
* Used e.g. by Update Manager to send BD firmware to BD drive
* '''Mode 0x5 (Download microcode and save)''' is used e.g. to write HRL to BD drive flash
* '''Mode 0x7 (Download microcode with offsets and save)''' is used e.g. to write BD firmware to BD drive flash
 
==AACS==
 
===AACS SPU Module===
 
* BD player on GameOS uses '''AacsModule.spu.isoself''' (/dev_flash/bdplayer) to perform AACS authentication
* Tested on OtherOS++ 3.55
* Host certificate, host private key and AACS LA public key are stored encrypted with AES-256-CTR in the SPU module and are decrypted when the SPU module is loaded or when it's accessed first. The AES-256-CTR key and IV are in the SPU module too.
* 4.76 uses new Host certificate
 
====Communication====
 
* BD player reads '''EID3''' with '''Indi Info Manager 0x17001/0x17002''' services and passes it to SPU module
* '''EID3 is NEVER used in the SPU module although BD player passes it to the SPU module'''
* Data is exchanged with the SPU module through '''SPU In Mbox''', '''SPU Out Intr Mbox''' and a data buffer in XDR memory of size '''0x2000''' bytes.
 
====Commands====
 
* The SPU module supports max '''0x78''' (til 4.75, 0x57 since 4.76) commands but not all are implemented
* After a command is finished by the SPU module, it sends the status of the command to PPU through '''SPU Out Intr Mbox'''. Value 0 means success.
 
 
{| class="wikitable sortable"
|+ style="caption-side:bottom; color:#e76700;"|''No full list!''
! colspan="2" style="background-color:#FFEBAD;"| Command in FW !! rowspan="2" style="background-color:#FFEBAD;"| Name !! rowspan="2" style="background-color:#FFEBAD;"| Parameters !! rowspan="2" style="background-color:#FFEBAD;"| Info
|-
! style="background-color:#FFEBAD;"| -4.75 !! style="background-color:#FFEBAD;"| 4.76+
|-
| 0x02|| 0x34 || Read 4 Bytes from XDR Buffer || ||
* It just reads 4 bytes of data from the XDR buffer passed to the SPU module.
|-
| 0x1C|| 0x48 || Set KCD || ||
* Sends KCD (Key Conversion Data) to the SPU module.
* KCD is encrypted with the Bus Key which was established previously by AACS authentication.
|-
| 0x34|| 0x23 || Init AES_H || ||
* Initializes AES_H hashing function.
|-
| 0x35|| 0x22 || Calculate AES_H 1 || ||
* Calculates AES_H hash of the data stored in XDR buffer.
|-
| || 0x21 ||  || 2x 4 Bytes ||
Signed CSS CheckCRL
|-
| || 0x56||  || ||
Get Random Seed
|-
| || 0x32||  || ||
Unknown
|-
| 0x36|| 0x24 || Calculate AES_H 2 || ||
* Calculates AES_H hash of the data stored in XDR buffer.
|-
| 0x3C|| 0x12 || Generate Host Nonce || ||
* Generates a nonce which is returned in command '''0x3D''' / '''0x0C'''
|-
| 0x3D|| 0x0C || Get Host Nonce and Certificate || ||
* The data returned by this command is of size '''0x14 (Nonce) + 0x5c (Host Certificate)'''
* The data returned by this command is sent by BD player with SCSI command '''SEND KEY''' to BD drive during AACS authentication
* '''Host Certificate is easy to get from the SPU module, e.g. with aacs_module on OtherOS++'''
* The data contains a nonce, host public key and host certificate signature.
|-
| 0x3E|| 0x0D|| Set Drive Nonce and Certificate || ||
* Stores BD drive nonce and certificate in local memory of SPU
|-
| 0x3F|| 0x0E|| Verify Drive Certificate || ||
|-
| 0x40|| 0x0A|| Set Drive Key || ||
|-
| 0x44|| 0x10 || Sign Host Key || ||
|-
| 0x45|| 0x0B || Get Host Key || ||
|-
| 0x46|| 0x14 || Calculate Bus Key || ||
|-
| 0x47|| 0x1C || Set Volume ID || ||
* Sends volume id and its MAC to the SPU module
|-
| 0x48|| 0x1D || Calculate Volume ID MAC || ||
* Calculates MAC of the passed volume id
|-
| 0x49|| 0x15 || Verify Volume ID MAC || ||
* Verifies MAC of the passed volume id
|-
| 0x4A|| 0x1A || Set PMSN || ||
* Sends PMSN and its MAC to the SPU module
|-
| 0x4B|| 0x1B || Calculate PMSN MAC || ||
* Calculates MAC of the passed PMSN
|-
| 0x4C|| 0x16 || Verify PMSN || ||
* Sends media id and its MAC to the SPU module
|-
| 0x4D|| 0x18 || Set Media ID || ||
* Sends media id and its MAC to the SPU module
|-
| 0x4E|| 0x19 || Calculate Media ID MAC || ||
* Calculates MAC of the passed media id
|-
| 0x4F|| 0x17 || Verify Media ID MAC || ||
* Verifies MAC of the passed media id
|-
| 0x55|| 0x1F || Verify Host/Drive Revocation || ||
* BD player stores HRL/DRL list entries in XDR buffer and passes it to the SPU module for verification
|-
| 0x72|| 0x25 ||  || || OCRL related, Content Revocation List
|-
| 0x74|| 0x26 ||  || || OCRT related
|-
| 0x75|| 0x27 ||  || || OSIG related
|-
| 0xFEFEFEFF|| 0xFEFEFEFF|| Terminate Session || ||
* AACS SPU module runs and processes commands as long as you need
* After a command is complete, the SPU module waits for the next command
* This command terminates the current session and stops SPU module
|-
|}
 
===Drive Revocation List (DRL)===
 
* SHA1 hash is encrypted/decrypted by '''SYSCON services 0x9003/0x9004 (Encrypt/Decrypt)'''
* SHA1 hash is read with '''VTRM service 0x2005 (Retrieve)'''
* SHA1 hash is written with '''VTRM service 0x2003 (Store With Update)'''
 
===Content Revocation List (CRL)===
 
* SHA1 hash is encrypted/decrypted by '''SYSCON services 0x9003/0x9004 (Encrypt/Decrypt)'''
* SHA1 hash is read with '''VTRM service 0x2005 (Retrieve)'''
* SHA1 hash is written with '''VTRM service 0x2003 (Store With Update)'''
 
===Host Revocation List (HRL)===
 
* Stored in BD drive flash
* It can be read/written with SCSI commands '''READ/WRITE BUFFER'''. Yeah, it can be written too :D
 
====Read HRL from BD Drive Flash====
 
* It seems that BD drive has several HRL in its flash
* Empty HRL stored on BD drive flash can be read with SCSI command '''READ BUFFER''' by using as '''mode 0x2''', '''buffer id 0x4''' and '''allocation length 0x40'''
* Current HRL stored on BD drive flash can be read with SCSI command '''READ BUFFER''' by using as '''mode 0x2''', '''buffer id 0x5'''
 
====Empty HRL====
 
<pre>
# sg_read_buffer -m 2 -i 4 -o 0 -l $((0x40)) /dev/sr0
00    10 00 00 0c 00 03 10 03  00 00 00 01 21 00 00 34                   
10    00 00 00 00 00 00 00 00  1b 0b f2 6d 47 9e 77 62                   
20    3d 91 fc 78 b1 59 c9 52  ca a4 c7 41 85 24 96 64                   
30    8d 1d 95 8e 9b 84 c6 fa  4a dd 43 9b 42 98 fe ff 
 
# byte 0x21 at offset 0xc means Record Type HRL
 
# as you see this HRL is empty
 
</pre>
 
====Current HRL====
 
<pre>
# sg_read_buffer -m 2 -i 5 -o 0 -l $((0x7c)) /dev/sr0
00    10 00 00 0c 00 04 10 03  00 00 00 09 21 00 00 6c                   
10    00 00 00 07 00 00 00 07  00 09 ff ff 00 00 00 0b                   
20    00 00 ff ff 00 00 00 16  00 08 ff ff 00 00 00 21                   
30    00 03 ff ff 00 00 00 35  00 04 ff ff 00 00 00 4e                   
40    00 03 ff ff 00 00 00 54  00 03 ff ff 00 00 00 5e                   
50    80 93 3a 62 f5 5a 9c 8c  62 ce 7d b8 69 5d d7 b1                   
60    c3 0f 36 ff 96 a2 3b 32  cb cd 58 d4 12 c9 fd bf                   
70    f5 16 a6 4a 32 ba 60 f0  5d 71 74 10
 
# the current HRL is NOT empty and is from MKBv9 because the only BD movie i played on my PS3 has MKBv9
</pre>
 
===PS3 BD Player Host Certificate===
 
<pre>
$ hexdump -C aacs_auth/ps3_host_cert.bin
00000000  02 01 00 5c ff ff 80 00  00 39 00 00 65 ea c9 87  |...\ÿÿ...9..eêÉ.|
00000010  8b 85 ef f4 d7 7a 62 b1  d6 00 02 4a ce 68 dd 33  |..ïô×zb±Ö..JÎhÝ3|
00000020  66 88 0e 4f 84 4f 34 b7  7a 05 01 35 a2 0e 73 b6  |f..O.O4·z..5¢.s¶|
00000030  26 da ea 51 57 b3 2e b8  4b c6 e8 7b 0d ee 4d 83  |&ÚêQW³.žKÆè{.îM.|
00000040  3c ea da 86 12 01 51 00  2c 3c 66 d5 25 6f 71 cf  |<êÚ...Q.,<fÕ%oqÏ|
00000050  a6 8b 7e 55 ba 1b 35 1f  34 03 43 4e              |Š.~Uº.5.4.CN|
0000005c
 
# Host ID is 0xffff80000039
</pre>
 
===PS3 BD Player Host Private Key===
 
<pre>
$ hexdump -C aacs_auth/ps3_host_priv_key.bin
00000000  00 66 8c 9a 75 ee fc 8d  a4 26 19 38 e2 71 28 50  |.f..u....&.8.q(P|
00000010  61 bb 09 f0 dd                                    |a....|
</pre>
 
===AACS Processing Keys===
 
====MKB v1====
 
<pre>
glevand@bastion:~/aacs_proc_key$ ./aacs_proc_key -n 0x389 -k ps3_device_keys -u ps3_device_key_u_masks_uvs mkbs/MKB_RW_v1.inf
 
=MKB=
type:
0x00031003
version:
0x00000001
 
MKB U masks and UVs: 514
 
=applying subset-difference=
index: 0
UV: 0x00000001
U mask: 0xff800000
V mask: 0xfffffffe
 
=applying device key=
index: 244
UV: 0x00000100
U mask: 0xff800000
V mask: 0xfffffe00
device key:
00000000: 81 08 27 a7 6e 5b 2c c1 68 5e 32 17 a2 3e 21 86 |..'.n[,.h^2..>!.|
 
processing key:
00000000: 09 f9 11 02 9d 74 e3 5b d8 41 56 c5 63 56 88 c0 |.....t.[.AV.cV..|
 
C value:
00000000: cb 06 90 db e6 54 55 7b 12 62 aa d7 89 f4 9d 92 |.....TU{.b......|
 
media key:
00000000: b4 6c 48 5e f7 51 ae 29 ef 87 bc 58 28 f3 2a 8d |.lH^.Q.)...X(.*.|
 
=MKB verify media key data=
encrypted:
00000000: 46 32 5b 42 48 b4 86 5a fc ef 75 25 47 b1 b5 12 |F2[BH..Z..u%G...|
decrypted:
00000000: 01 23 45 67 89 ab cd ef 0d ac 14 b9 ee f4 bd cc |.#Eg............|
</pre>
 
====MKB v3====
 
<pre>
glevand@bastion:~/aacs_proc_key$ ./aacs_proc_key -n 0x389 -k ps3_device_keys -u ps3_device_key_u_masks_uvs mkbs/MKB_RW_v3.inf
 
=MKB=
type:
0x00031003
version:
0x00000003
 
MKB U masks and UVs: 528
 
=applying subset-difference=
index: 14
UV: 0x00000080
U mask: 0xff800000
V mask: 0xffffff00
 
=applying device key=
index: 244
UV: 0x00000100
U mask: 0xff800000
V mask: 0xfffffe00
device key:
00000000: 81 08 27 a7 6e 5b 2c c1 68 5e 32 17 a2 3e 21 86 |..'.n[,.h^2..>!.|
 
processing key:
00000000: 97 39 40 bb 18 0e 83 26 62 31 ee 59 6c ef 65 b2 |.9@....&b1.Yl.e.|
 
C value:
00000000: 0a b7 33 82 85 62 91 d1 91 4a 95 9e 36 18 c7 a1 |..3..b...J..6...|
 
media key:
00000000: 6e da eb d4 88 aa 38 58 74 26 35 fd fd 36 66 d5 |n.....8Xt&5..6f.|
 
=MKB verify media key data=
encrypted:
00000000: 99 76 96 b0 6f 49 37 9b c4 b9 2b be 73 ce 96 1a |.v..oI7...+.s...|
decrypted:
00000000: 01 23 45 67 89 ab cd ef fb 01 cc 85 eb e5 bf 0a |.#Eg............|
</pre>
 
====MKB v4====
 
<pre>
glevand@bastion:~/aacs_proc_key$ ./aacs_proc_key -n 0x389 -k ps3_device_keys -u ps3_device_key_u_masks_uvs mkbs/MKB_RW_v4.inf
 
=MKB=
type:
0x00031003
version:
0x00000004
 
MKB U masks and UVs: 526
 
=applying subset-difference=
index: 12
UV: 0x00000080
U mask: 0xff800000
V mask: 0xffffff00
 
=applying device key=
index: 244
UV: 0x00000100
U mask: 0xff800000
V mask: 0xfffffe00
device key:
00000000: 81 08 27 a7 6e 5b 2c c1 68 5e 32 17 a2 3e 21 86 |..'.n[,.h^2..>!.|
 
processing key:
00000000: 97 39 40 bb 18 0e 83 26 62 31 ee 59 6c ef 65 b2 |.9@....&b1.Yl.e.|
 
C value:
00000000: bf 71 0c 8b 46 a0 24 d8 f0 3a a1 26 37 9d fb fc |.q..F.$..:.&7...|
 
media key:
00000000: ef 18 c0 dd bf 02 32 a1 2f 57 f7 65 79 2c 1c 58 |......2./W.ey,.X|
 
=MKB verify media key data=
encrypted:
00000000: 54 85 08 a9 6a 70 2a c9 32 e3 74 a6 55 78 6c 01 |T...jp*.2.t.Uxl.|
decrypted:
00000000: 01 23 45 67 89 ab cd ef da 90 cf 2a e5 b2 6c 45 |.#Eg.......*..lE|
</pre>
 
====MKB v7====
 
<pre>
glevand@bastion:~/aacs_proc_key$ ./aacs_proc_key -n 0x389 -k ps3_device_keys -u ps3_device_key_u_masks_uvs mkbs/MKB_RW_v7.inf
 
=MKB=
type:
0x00031003
version:
0x00000007
 
MKB U masks and UVs: 526
 
=applying subset-difference=
index: 7
UV: 0x00000080
U mask: 0xff800000
V mask: 0xffffff00
 
=applying device key=
index: 244
UV: 0x00000100
U mask: 0xff800000
V mask: 0xfffffe00
device key:
00000000: 81 08 27 a7 6e 5b 2c c1 68 5e 32 17 a2 3e 21 86 |..'.n[,.h^2..>!.|
 
processing key:
00000000: 97 39 40 bb 18 0e 83 26 62 31 ee 59 6c ef 65 b2 |.9@....&b1.Yl.e.|
 
C value:
00000000: 21 fd c9 4b 3e 1a f3 fe 9e b4 7a e6 ef 01 75 1b |!..K>.....z...u.|
 
media key:
00000000: af cd e2 c8 67 12 a4 b6 a8 58 0c 15 ef 07 6e f8 |....g....X....n.|
 
=MKB verify media key data=
encrypted:
00000000: 4b 21 29 a5 0f db 96 bc bc 01 04 71 42 79 00 e5 |K!)........qBy..|
decrypted:
00000000: 01 23 45 67 89 ab cd ef 4e f9 d2 05 6e 19 c1 79 |.#Eg....N...n..y|
</pre>
 
====MKB v8====
 
<pre>
glevand@debian-hdd:~/aacs_proc_key$ ./aacs_proc_key -n 0x389 -k ps3_device_keys -u ps3_device_key_u_masks_uvs mkbs/MKB_RW_v8.inf
 
=MKB=
type:
0x00031003
version:
0x00000008
 
MKB U masks and UVs: 523
 
=applying subset-difference=
index: 4
UV: 0x00000080
U mask: 0xff800000
V mask: 0xffffff00
 
=applying device key=
index: 244
UV: 0x00000100
U mask: 0xff800000
V mask: 0xfffffe00
device key:
00000000: 81 08 27 a7 6e 5b 2c c1 68 5e 32 17 a2 3e 21 86 |..'.n[,.h^2..>!.|
 
processing key:
00000000: 97 39 40 bb 18 0e 83 26 62 31 ee 59 6c ef 65 b2 |.9@....&b1.Yl.e.|
 
C value:
00000000: 73 2d 10 bd f8 b4 87 e2 86 a6 d5 3a 6d db 69 15 |s-.........:m.i.|
 
media key:
00000000: dd 46 d4 0d 26 54 5a ce 6c 59 0c 65 b7 2b 3a 9f |.F..&TZ.lY.e.+:.|
 
=MKB verify media key data=
encrypted:
00000000: c6 f6 f9 54 ce 90 e0 5e 2b 3b e4 1e 24 92 90 b2 |...T...^+;..$...|
decrypted:
00000000: 01 23 45 67 89 ab cd ef 97 e6 61 8b d1 69 3e a0 |.#Eg......a..i>.|
</pre>
 
====MKB v9====
 
<pre>
glevand@bastion:~/aacs_proc_key$ ./aacs_proc_key -n 0x389 -k ps3_device_keys -u ps3_device_key_u_masks_uvs mkbs/MKB_RW_v9.inf
 
=MKB=
type:
0x00031003
version:
0x00000009
 
MKB U masks and UVs: 520
 
=applying subset-difference=
index: 2
UV: 0x00000080
U mask: 0xff800000
V mask: 0xffffff00
 
=applying device key=
index: 244
UV: 0x00000100
U mask: 0xff800000
V mask: 0xfffffe00
device key:
00000000: 81 08 27 a7 6e 5b 2c c1 68 5e 32 17 a2 3e 21 86 |..'.n[,.h^2..>!.|
 
processing key:
00000000: 97 39 40 bb 18 0e 83 26 62 31 ee 59 6c ef 65 b2 |.9@....&b1.Yl.e.|
 
C value:
00000000: a4 5a c6 87 43 49 70 bb bf 0c 22 52 83 9e 2a f6 |.Z..CIp..."R..*.|
 
media key:
00000000: 37 02 bd fc 96 dc a2 18 2e 55 b0 79 6d ad 36 6b |7........U.ym.6k|
 
=MKB verify media key data=
encrypted:
00000000: 4d 5b 7b 9c 5d ee 55 a6 94 de e1 db 8d 08 c7 a2 |M[{.].U.........|
decrypted:
00000000: 01 23 45 67 89 ab cd ef cd 1d a8 8a 42 5a 10 43 |.#Eg........BZ.C|
</pre>
 
====MKB v10====
 
<pre>
glevand@bastion:~/aacs_proc_key$ ./aacs_proc_key -n 0x389 -k ps3_device_keys -u ps3_device_key_u_masks_uvs mkbs/MKB_RW_v10.inf
 
=MKB=
type:
0x00031003
version:
0x0000000a
 
MKB U masks and UVs: 522
 
=applying subset-difference=
index: 3
UV: 0x00000080
U mask: 0xff800000
V mask: 0xffffff00
 
=applying device key=
index: 244
UV: 0x00000100
U mask: 0xff800000
V mask: 0xfffffe00
device key:
00000000: 81 08 27 a7 6e 5b 2c c1 68 5e 32 17 a2 3e 21 86 |..'.n[,.h^2..>!.|
 
processing key:
00000000: 97 39 40 bb 18 0e 83 26 62 31 ee 59 6c ef 65 b2 |.9@....&b1.Yl.e.|
 
C value:
00000000: d4 77 dd 1a 8a 5c 6d d1 dd 31 2d af f7 d3 14 fa |.w...\m..1-.....|
 
media key:
00000000: 38 32 2b 3c 61 b0 35 b4 52 89 84 59 f4 7a 76 e6 |82+<a.5.R..Y.zv.|
 
=MKB verify media key data=
encrypted:
00000000: 3f d3 d5 fb 42 37 d9 05 b8 db 6b 03 a0 fe 2e 48 |?...B7....k....H|
decrypted:
00000000: 01 23 45 67 89 ab cd ef 65 b1 87 8c eb 0d 60 0f |.#Eg....e.....`.|
</pre>
 
====MKB v12====
 
<pre>
glevand@bastion:~/aacs_proc_key$ ./aacs_proc_key -n 0x389 -k ps3_device_keys -u ps3_device_key_u_masks_uvs mkbs/MKB_RW_v12.inf
 
=MKB=
type:
0x00031003
version:
0x0000000c
 
MKB U masks and UVs: 522
 
=applying subset-difference=
index: 3
UV: 0x00000080
U mask: 0xff800000
V mask: 0xffffff00
 
=applying device key=
index: 244
UV: 0x00000100
U mask: 0xff800000
V mask: 0xfffffe00
device key:
00000000: 81 08 27 a7 6e 5b 2c c1 68 5e 32 17 a2 3e 21 86 |..'.n[,.h^2..>!.|
 
processing key:
00000000: 97 39 40 bb 18 0e 83 26 62 31 ee 59 6c ef 65 b2 |.9@....&b1.Yl.e.|
 
C value:
00000000: 89 75 89 e6 6f 4a de 95 11 32 57 6a cb 99 dd 69 |.u..oJ...2Wj...i|
 
media key:
00000000: 4b dd 69 9d 32 98 d7 b0 ad 32 71 6b 3d 9c e3 c2 |K.i.2....2qk=...|
 
=MKB verify media key data=
encrypted:
00000000: 8d 43 fd f2 15 fa 58 78 64 db 25 46 62 ab 02 30 |.C....Xxd.%Fb..0|
decrypted:
00000000: 01 23 45 67 89 ab cd ef e6 1c bf 98 45 82 64 d9 |.#Eg........E.d.|
</pre>
 
====MKB v14====
 
<pre>
glevand@bastion:~/aacs_proc_key$ ./aacs_proc_key -n 0x389 -k ps3_device_keys -u ps3_device_key_u_masks_uvs mkbs/MKB_RW_v14.inf
 
=MKB=
type:
0x00031003
version:
0x0000000e
 
MKB U masks and UVs: 526
 
=applying subset-difference=
index: 6
UV: 0x00000248
U mask: 0xfffffe00
V mask: 0xfffffff0
 
=applying device key=
index: 28
UV: 0x00000280
U mask: 0xfffffe00
V mask: 0xffffff00
device key:
00000000: 44 14 5a 84 6f 19 d0 96 f2 c8 4a 2e 50 c5 c4 f5 |D.Z.o.....J.P...|
 
processing key:
00000000: 58 eb da df 88 dc c9 33 04 cb be db 9e e0 95 f6 |X......3........|
 
C value:
00000000: 8c 7e 31 e8 15 17 7e c3 2c 67 b7 cc 87 e9 39 c3 |.~1...~.,g....9.|
 
media key:
00000000: 4b b1 31 d1 6e 0e 86 45 89 07 a2 68 91 c4 e5 38 |K.1.n..E...h...8|
 
=MKB verify media key data=
encrypted:
00000000: 20 03 8c 70 7d ab d0 6f ba 86 39 f0 31 26 86 5f | ..p}..o..9.1&._|
decrypted:
00000000: 01 23 45 67 89 ab cd ef 27 9f e5 35 0b df 3d a5 |.#Eg....'..5..=.|
</pre>
 
====MKB v15====
 
<pre>
glevand@bastion:~/aacs_proc_key$ ./aacs_proc_key -n 0x389 -k ps3_device_keys -u ps3_device_key_u_masks_uvs mkbs/MKB_RW_v15.inf
 
=MKB=
type:
0x00031003
version:
0x0000000f
 
MKB U masks and UVs: 527
 
=applying subset-difference=
index: 6
UV: 0x00000248
U mask: 0xfffffe00
V mask: 0xfffffff0
 
=applying device key=
index: 28
UV: 0x00000280
U mask: 0xfffffe00
V mask: 0xffffff00
device key:
00000000: 44 14 5a 84 6f 19 d0 96 f2 c8 4a 2e 50 c5 c4 f5 |D.Z.o.....J.P...|
 
processing key:
00000000: 58 eb da df 88 dc c9 33 04 cb be db 9e e0 95 f6 |X......3........|
 
C value:
00000000: 75 da 59 cf 0d c2 c0 95 86 fc 6b 8e 2e e9 cc 85 |u.Y.......k.....|
 
media key:
00000000: 28 46 25 38 3d cc 4f 1f 90 be 7d f7 8a ba 7b fd |(F%8=.O...}...{.|
 
=MKB verify media key data=
encrypted:
00000000: 8d d2 69 e0 b7 6a 44 53 03 ad ef 58 44 fc a7 d7 |..i..jDS...XD...|
decrypted:
00000000: 01 23 45 67 89 ab cd ef ff 6a 7d c3 17 bb 19 11 |.#Eg.....j}.....|
</pre>
====MKB v16====
 
<pre>
glevand@bastion:~/aacs_proc_key$ ./aacs_proc_key -n 0x389 -k ps3_device_keys -u ps3_device_key_u_masks_uvs mkbs/MKB_RW_v16.inf
 
=MKB=
type:
0x00031003
version:
0x00000010
 
MKB U masks and UVs: 531
 
=applying subset-difference=
index: 5
UV: 0x00000248
U mask: 0xfffffe00
V mask: 0xfffffff0
 
=applying device key=
index: 28
UV: 0x00000280
U mask: 0xfffffe00
V mask: 0xffffff00
device key:
00000000: 44 14 5a 84 6f 19 d0 96 f2 c8 4a 2e 50 c5 c4 f5 |D.Z.o.....J.P...|
 
processing key:
00000000: 58 eb da df 88 dc c9 33 04 cb be db 9e e0 95 f6 |X......3........|
 
C value:
00000000: f8 49 9b d1 32 f9 6e 8d 33 98 35 a8 54 80 d9 fe |.I..2.n.3.5.T...|
 
media key:
00000000: 3a bf bf d7 7e b8 01 43 a9 3c 15 3f ba 47 8c e1 |:...~..C.<.?.G..|
 
=MKB verify media key data=
encrypted:
00000000: 8a 67 86 b6 9d 0d 22 dd 5d c2 88 1f 08 f3 ab b4 |.g....".].......|
decrypted:
00000000: 01 23 45 67 89 ab cd ef d6 32 1f 17 c4 2f e2 4a |.#Eg.....2.../.J|
</pre>
 
====MKB v17====
 
<pre>
glevand@bastion:~/aacs_proc_key$ ./aacs_proc_key -n 0x389 -k ps3_device_keys -u ps3_device_key_u_masks_uvs mkbs/MKB_RW_v17.inf
 
=MKB=
type:
0x00031003
version:
0x00000011
 
MKB U masks and UVs: 540
 
=applying subset-difference=
index: 14
UV: 0x00000308
U mask: 0xffffff00
V mask: 0xfffffff0
 
=applying device key=
index: 21
UV: 0x00000340
U mask: 0xffffff00
V mask: 0xffffff80
device key:
00000000: eb 55 a4 75 08 0f bc f1 85 34 ef a0 83 9a 73 73 |.U.u.....4....ss|
 
processing key:
00000000: 46 5f a8 be 82 85 09 01 4d 05 d2 fc ce ff 35 d2 |F_......M.....5.|
 
C value:
00000000: 01 f7 54 0b 34 e8 c1 ce 63 8d ea fa bc ce 6e 7b |..T.4...c.....n{|
 
media key:
00000000: ef 63 4e a8 ca 06 d1 6a c7 21 65 1b 18 b3 04 c6 |.cN....j.!e.....|
 
=MKB verify media key data=
encrypted:
00000000: d3 b9 d4 9c b6 94 47 d5 3d cc 42 fe 3e 47 40 04 |......G.=.B.>G@.|
decrypted:
00000000: 01 23 45 67 89 ab cd ef f6 b4 c8 6a b7 b8 39 fc |.#Eg.......j..9.|
</pre>
 
====MKB v18====
 
<pre>
glevand@bastion:~/aacs_proc_key$ ./aacs_proc_key -n 0x389 -k ps3_device_keys -u ps3_device_key_u_masks_uvs mkbs/MKB_RW_v18.inf
 
=MKB=
type:
0x00031003
version:
0x00000012
 
MKB U masks and UVs: 543
 
=applying subset-difference=
index: 17
UV: 0x00000320
U mask: 0xffffff00
V mask: 0xffffffc0
 
=applying device key=
index: 21
UV: 0x00000340
U mask: 0xffffff00
V mask: 0xffffff80
device key:
00000000: eb 55 a4 75 08 0f bc f1 85 34 ef a0 83 9a 73 73 |.U.u.....4....ss|
 
processing key:
00000000: ad 5e 54 6c 46 d7 2d c0 83 ae b5 68 69 24 e1 b3 |.^TlF.-....hi$..|
 
C value:
00000000: 7a 8f 03 41 27 c4 86 58 05 37 3a 90 de f8 de 26 |z..A'..X.7:....&|
 
media key:
00000000: e3 ed cd b4 59 b4 12 d4 ae f9 4d 8e 78 7a cd 7d |....Y.....M.xz.}|
 
=MKB verify media key data=
encrypted:
00000000: ea 45 fa 35 65 70 56 6f 6a 86 65 ad 52 e7 71 a4 |.E.5epVoj.e.R.q.|
decrypted:
00000000: 01 23 45 67 89 ab cd ef bd 36 f9 ce 60 54 80 3c |.#Eg.....6..`T.<|
</pre>
 
====MKB v19====
 
<pre>
glevand@bastion:~/aacs_proc_key$ ./aacs_proc_key -n 0x389 -k ps3_device_keys -u ps3_device_key_u_masks_uvs mkbs/MKB_RW_v19.inf
 
=MKB=
type:
0x00031003
version:
0x00000013
 
MKB U masks and UVs: 544
 
=applying subset-difference=
index: 17
UV: 0x00000320
U mask: 0xffffff00
V mask: 0xffffffc0
 
=applying device key=
index: 21
UV: 0x00000340
U mask: 0xffffff00
V mask: 0xffffff80
device key:
00000000: eb 55 a4 75 08 0f bc f1 85 34 ef a0 83 9a 73 73 |.U.u.....4....ss|
 
processing key:
00000000: ad 5e 54 6c 46 d7 2d c0 83 ae b5 68 69 24 e1 b3 |.^TlF.-....hi$..|
 
C value:
00000000: b9 0b 55 d1 18 3c cc 80 20 1c 9f 26 c3 58 27 18 |..U..<.. ..&.X'.|
 
media key:
00000000: 75 a9 79 9c 67 50 13 89 98 62 34 5b eb 54 34 dd |u.y.gP...b4[.T4.|
 
=MKB verify media key data=
encrypted:
00000000: c4 f0 ce 75 1b 12 b9 f0 22 2f 31 70 66 a9 6a b8 |...u...."/1pf.j.|
decrypted:
00000000: 01 23 45 67 89 ab cd ef 66 5c 65 d3 c4 4c c7 b0 |.#Eg....f\e..L..|
</pre>
 
====MKB v20====
 
<pre>
glevand@debian-hdd:~/aacs_proc_key$ ./aacs_proc_key -n 0x389 -k ps3_device_keys -u ps3_device_key_u_masks_uvs mkbs/MKB_RW_v20.inf
 
=MKB=
type:
0x00031003
version:
0x00000014
 
MKB U masks and UVs: 544
 
=applying subset-difference=
index: 19
UV: 0x00000384
U mask: 0xffffff80
V mask: 0xfffffff8
 
=applying device key=
index: 18
UV: 0x00000384
U mask: 0xffffff80
V mask: 0xfffffff8
device key:
00000000: fb 4a c3 90 09 e8 21 13 d4 5e cf 4b 7e ae a4 67 |.J....!..^.K~..g|
 
processing key:
00000000: 53 fc e7 8e cd 35 2d a5 0d 52 6b 5e e3 d3 d9 6b |S....5-..Rk^...k|
 
C value:
00000000: 10 9f f1 69 36 07 7d 7e ad 8f d2 1a 28 c5 09 ed |...i6.}~....(...|
 
media key:
00000000: dc 9f 08 f7 cb 1b f8 c4 cf 96 4e 96 df 23 56 58 |..........N..#VX|
 
=MKB verify media key data=
encrypted:
00000000: 18 ca f5 51 8f 36 ef 2f 7a 49 78 ff 54 40 a5 f1 |...Q.6./zIx.T@..|
decrypted:
00000000: 01 23 45 67 89 ab cd ef c5 5d 11 08 c3 26 db 48 |.#Eg.....]...&.H|
</pre>
 
====MKB v21====
 
<pre>
glevand@bastion:~/aacs_proc_key$ ./aacs_proc_key -n 0x389 -k ps3_device_keys -u ps3_device_key_u_masks_uvs mkbs/MKB_RW_v21.inf
 
=MKB=
type:
0x00031003
version:
0x00000015
 
MKB U masks and UVs: 552
 
=applying subset-difference=
index: 19
UV: 0x00000384
U mask: 0xffffff80
V mask: 0xfffffff8
 
=applying device key=
index: 18
UV: 0x00000384
U mask: 0xffffff80
V mask: 0xfffffff8
device key:
00000000: fb 4a c3 90 09 e8 21 13 d4 5e cf 4b 7e ae a4 67 |.J....!..^.K~..g|
 
processing key:
00000000: 53 fc e7 8e cd 35 2d a5 0d 52 6b 5e e3 d3 d9 6b |S....5-..Rk^...k|
 
C value:
00000000: c0 0c fa bf f0 fe f2 32 77 19 db c4 d8 f8 60 c9 |.......2w.....`.|
 
media key:
00000000: 55 83 aa 69 ff 52 16 83 c2 93 b3 48 03 2a 57 38 |U..i.R.....H.*W8|
 
=MKB verify media key data=
encrypted:
00000000: 12 5b f2 75 c8 f8 05 6b 4f 31 a5 ea 4a 12 9f a9 |.[.u...kO1..J...|
decrypted:
00000000: 01 23 45 67 89 ab cd ef dc 46 45 b4 79 8d 4f 68 |.#Eg.....FE.y.Oh|
</pre>
 
====MKB v23====
 
<pre>
glevand@debian-hdd:~/aacs_proc_key$ ./aacs_proc_key -n 0x389 -k ps3_device_keys -u ps3_device_key_u_masks_uvs mkbs/MKB_RW_v23.inf
 
=MKB=
type:
0x00031003
version:
0x00000017
 
MKB U masks and UVs: 556
 
=applying subset-difference=
index: 17
UV: 0x00000384
U mask: 0xffffffe0
V mask: 0xfffffff8
 
=applying device key=
index: 7
UV: 0x00000384
U mask: 0xffffffe0
V mask: 0xfffffff8
device key:
00000000: 8b f4 fb d9 1a 7f b7 db 85 76 d1 e5 a1 5a 85 44 |.........v...Z.D|
 
processing key:
00000000: c3 22 38 97 6f f4 4a 51 e2 d3 35 53 cf e8 57 72 |."8.o.JQ..5S..Wr|
 
C value:
00000000: f0 81 d4 93 aa b5 01 1a a7 ff 8e 18 8a 48 8a 2d |.............H.-|
 
media key:
00000000: 02 04 59 d0 7c b5 54 94 bf 46 9b 98 91 1e 43 1f |..Y.|.T..F....C.|
 
=MKB verify media key data=
encrypted:
00000000: 24 a1 27 f9 30 70 25 67 07 2f 2a d4 13 89 0d aa |$.'.0p%g./*.....|
decrypted:
00000000: 01 23 45 67 89 ab cd ef 21 00 20 84 c4 5f 36 78 |.#Eg....!. .._6x|
</pre>
 
====MKB v25====
 
<pre>
glevand@bastion:~/aacs_proc_key$ ./aacs_proc_key -n 0x389 -k ps3_device_keys -u ps3_device_key_u_masks_uvs mkbs/MKB_RW_v25.inf
 
=MKB=
type:
0x00031003
version:
0x00000019
 
MKB U masks and UVs: 564
 
=applying subset-difference=
index: 13
UV: 0x00000384
U mask: 0xffffffe0
V mask: 0xfffffff8
 
=applying device key=
index: 7
UV: 0x00000384
U mask: 0xffffffe0
V mask: 0xfffffff8
device key:
00000000: 8b f4 fb d9 1a 7f b7 db 85 76 d1 e5 a1 5a 85 44 |.........v...Z.D|
 
processing key:
00000000: c3 22 38 97 6f f4 4a 51 e2 d3 35 53 cf e8 57 72 |."8.o.JQ..5S..Wr|
 
C value:
00000000: 19 62 23 7d 81 01 c2 55 2f 36 20 1b 3e 69 40 10 |.b#}...U/6 .>i@.|
 
media key:
00000000: 70 b5 9f 35 86 5d 18 73 bb 80 c3 2b f7 41 f6 14 |p..5.].s...+.A..|
 
=MKB verify media key data=
encrypted:
00000000: 89 be 1e 1e b1 93 4c f2 2d ac c3 ce ed 10 07 f0 |......L.-.......|
decrypted:
00000000: 01 23 45 67 89 ab cd ef 3f 5d 87 7a 88 09 db c4 |.#Eg....?].z....|
</pre>
 
===Documentation===
 
* SCSI Specification: [http://www.13thmonkey.org/documentation/SCSI/]
* AACS Specification Common: [http://www.aacsla.com/specifications/specs091/AACS_Spec_Common_0.91.pdf]
* AACS Specification Pre-recorded Video Book [http://www.aacsla.com/specifications/AACS_Spec_Prerecorded_Final_0.951.pdf]
* AACS Tutorial: [http://forum.doom9.org/showthread.php?t=122363]
* AACS Overview: [http://www.cacr.math.uwaterloo.ca/techreports/2007/cacr2007-25.pdf]
 
==CSS==
 
===CSS SPU Module===
 
* DVD player on GameOS uses '''CssModule.spu.isoself''' (/dev_flash/bdplayer) to perform CSS authentication
 
====Commands====
 
* The SPU module supports max '''0x25''' commands but not all are implemented
* After a command is finished by the SPU module, it sends the status of the command to PPU through '''SPU Out Intr Mbox'''. Value 0 means success.
 
=====Generate Host Challenge Key (0x3)=====
 
* Generates '''0x10''' bytes of '''host challenge key'''
 
=====Set Drive Key1 (0x4)=====
 
* Sends '''key1''' of size '''0x5''' returned by DVD drive to the SPU module
 
=====Set Drive Challenge Key (0x5)=====
 
* Sends '''0x10''' bytes of '''drive challenge key''' to the SPU module
 
=====Calculate Host Key2 (0x6)=====
 
* Calculates '''key2''' of size '''0x5'''
 
=====Get Host Key2 (0x7)=====
 
* Returns '''key2''' of size '''0x5'''
 
=====Set Disc Key (0x8)=====
 
* Sends Disc Key block of size '''0x800''' to the SPU module
 
=====Decrypt Sector (0xc)=====
 
* Decrypts the passed sector
 
===CSS Salt===
 
* It's NOT in clear text in the SPU module, it's obfuscated by xoring '''0xDEAF''' (SONY employees have a sense of humor).
* There are 2 bytes for every salt byte
 
Obfuscated:
<pre>
71 ED 3F A3 DA FE E4 94  40 8C
</pre>
 
Clear text:
<pre>
F4  10  45  A3  E2
</pre>
 
===PS3 DVD Player Key Index===
 
<pre>
0x69
</pre>
 
===Documentation===
 
* The Content Scrambling System (CSS): [http://www.tinyted.net/eddie/css_auth.html]
 
* Cryptanalysis of Contents Scrambling System: [http://www.cs.cmu.edu/~dst/DeCSS/FrankStevenson/analysis.html]
 
* Cryptography in Home Entertainment: [http://www.math.ucsd.edu/~crypto/Projects/MarkBarry/index.htm]
 
* Patching DVD Firmware: [http://xvi.rpc1.org/Patching%20DVD%20firmware.pdf]
 
==CPRM==
 
===Commands===
 
* The SPU module supports '''0x13''' commands.
 
===4C Secret Constant (S-Box)===
 
===Documentation===
 
* Cryptomeria C2 Specification: [http://edipermadi.files.wordpress.com/2008/08/cryptomeria-c2-spec.pdf]
 
* Cryptoanalysis of C2: [http://caislab.kaist.ac.kr/lecture/2010/spring/cs548/advanced/A05.pdf]
 
==Remarrying BD Drive on OtherOS++==
 
===fdm_spu_module.self===
 
* This SPU module can create either P- or S-Block which are sent to BD drive
* '''EID2''' is passed to the SPU module
* A XDR memory buffer of size '''0x1000''' is passed to the SPU module
* 4 bytes at offset 0x10 of the XDR memory buffer contain the type of block which should be produced by the SPU module
* When the SPU module is finished, the XDR memory buffer contains the needed block
* After the S- and P-Blocks are produced by the SPU module, they are decrypted again but with '''DES''' (CBC mode, key length is 64 bits, initialization vector length is 64 bits) before they are sent to BD drive. S$ny cuts the header and the footer of 16 bytes each from final P- and S-blocks before sending them to drive.
 
====Block types====
 
{| class="wikitable"
|-
! Type !! Description !! BD Drive Buffer ID
|-
| 0x1 || P-Block || 0x2
|-
| 0x2 || S-Block || 0x3
|}
 
===Remarrying===
 
====Preparations====
 
* You will need '''ps3dm-utils''' and '''sg3-utils'''
* Dump your '''EID2''' from '''flash''' or with '''ps3dm-utils'''
* First create P- and S-Blocks from your EID2 with kernel module '''fdm_spu_module'''
 
====P-Block====
 
Decrypted P-Block (and EID4) contains region settings (see below)
 
In decrypted P-Block(bytes 0x30 and 0x32) and in EID4(first byte) these bytes match [[Product Code]]:
{| class="wikitable sortable" style="font-size:small; border:2px ridge #999999;"
|-
! Hex !! bitflag !! [[Product Code]] !! Console Type !! Remarks
|-
| 0xFF || '''11111111''' || {{TID80}} || No BD playback on that [[Product Code]]
|-
| 0xFF || '''11111111''' || {{TID81}} || No BD playback on that [[Product Code]]
|-
| 0xFF || '''11111111''' || {{TID82}} || No BD playback on that [[Product Code]]
|-
| 0x01 || 0000000'''1''' || {{TID83}} || bit 0 (Region 0: Japan?)
|-
| 0x02 || 000000'''1'''0 || {{TID84}} || bit 1 (Region 1: USA & Canada, Bermuda, and US Territories)
|-
| 0x04 || 00000'''1'''00 || {{TID85}} || bit 2 (Region 2: Europe (with the exceptions of Russia, Ukraine, Belarus), South Africa, Swaziland, Middle East, Egypt, Lesotho, and Greenland)
|-
| 0x10 || 000'''1'''0000 || {{TID86}} || bit 4 (Region 3: Southeastern Asia)
|-
| 0x04 || 00000'''1'''00 || {{TID87}} || bit 2 (Region 2: Europe (with the exceptions of Russia, Ukraine, Belarus), South Africa, Swaziland, Middle East, Egypt, Lesotho, and Greenland)
|-
| 0x08 || 0000'''1'''000 || {{TID88}} || bit 3 (Region 4: Latin America and Australia)
|-
| 0x08 || 0000'''1'''000 || {{TID89}} || bit 3 (Region 4: Latin America and Australia)
|-
| 0x20 || 00'''1'''00000 || {{TID8A}} || bit 5 (Region 5: Russia, Asia (non-southeast), and Africa)
|-
| 0x10 || 000'''1'''0000 || {{TID8B}} || bit 4 (Region 3: Southeastern Asia)
|-
| 0x20 || 00'''1'''00000 || {{TID8C}} || bit 5 (Region 5: Russia, Asia (non-southeast), and Africa)
|-
| 0x40 || 0'''1'''000000 || {{TID8D}} || bit 6? (Region 6: China)
|-
| 0x10 || 000'''1'''0000 || {{TID8E}} || bit 4  (Region 3: Southeastern Asia)
|-
| 0x08 || 0000'''1'''000 || {{TID8F}} || bit 3 (Region 4: Latin America and Australia)
|-
| 0xFF || '''11111111''' || {{TIDA0}} || No BD playback on that [[Product Code]]
|-
|}
 
=====Creating=====
 
=====Sending to BD Drive=====
 
====S-Block====
 
=====Creating=====
 
=====Sending to BD Drive=====
 
====HRL====
 
=====Empty HRL=====
 
=====Sending to BD Drive=====
 
=VTRM=
Crossreference: [http://wiki.gitbrew.org/wikibrew/PS3:HvReverseEngineering#VTRM gitbrew.org::HV#VTRM] <br />
 
==VTRM Services==
 
===Store With Update (0x2003)===
 
* Used by GameOS BD player to update DRL/CRL hashes
 
===Retrieve (0x2005)===
 
* '''Product mode''' is NOT required
* '''0x40''' bytes of data are read from NOR flash, decrypted by SYSCON and returned to the caller
* Used e.g. by GameOS BD player to read SHA1 hashes of DRL and CRL
 
====DRL and CRL Hashes====
 
* Written by GameOS BD player during DRL/CRL update
* Read by GameOS BD player
* Hashes are stored encrypted on NOR flash
* Encryption/decryption is done by SYSCON (SYSCON Manager)
 
Test with ps3dm-utils:
<pre>
# mount dev_flash3
 
glevand@debian-hdd:~/ps3dm-utils$ sudo mount /dev/ps3vflashe /mnt
 
# DRL SHA1 hash
 
glevand@debian-hdd:~/ps3dm-utils$ sha1sum /mnt/data-revoke/drl/DRL1
8f0652bc6162a240362f90f1b2e5405bb82ee502  /mnt/data-revoke/drl/DRL1
 
# CRL SHA1 hash
 
glevand@debian-hdd:~/ps3dm-utils$ sha1sum /mnt/data-revoke/crl/CRL1
96791f41f9a76f4d895dd5820db108ec03d19250  /mnt/data-revoke/crl/CRL1
 
# Retrieve DRL and CRL SHA1 hashes from VTRM
# DRL hash is first and then follows CRL hash
 
glevand@debian-hdd:~/ps3dm-utils$ sudo ./ps3dm_vtrm -l 0x0 -p 0x1070000034000001 /dev/ps3dmproxy retrieve 0
0x8f 0x06 0x52 0xbc 0x61 0x62 0xa2 0x40 0x36 0x2f 0x90 0xf1 0xb2 0xe5 0x40 0x5b 0xb8 0x2e 0xe5 0x02
0x96 0x79 0x1f 0x41 0xf9 0xa7 0x6f 0x4d 0x89 0x5d 0xd5 0x82 0x0d 0xb1 0x08 0xec 0x03 0xd1 0x92 0x50
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
</pre>
 
===Backup Flash (0x2012)===
 
* Requires enabled '''product mode''' or else service returns always error '''0x5'''
* Reads and returns data from NOR flash beginning at NOR flash offset '''0xec0000'''
 
Test with ps3dm-utils:
<pre>
# enable product mode
 
# ps3dm_um /dev/ps3dmproxy write_eprom 0x48c07 0x0
/dev/ps3dmproxy: SS retval 0
 
# ps3dm_vtrm /dev/ps3dmproxy  backup_flash 0 0x200 | hexdump -C
00000000  53 43 45 49 ff ff ff ff  ff ff ff ff ff ff ff ff  |SCEIÿÿÿÿÿÿÿÿÿÿÿÿ|
00000010  ff ff ff ff ff ff ff ff  ff ff ff ff ff ff ff ff  |ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
*
00000200
 
# dd if=/dev/ps3nflasha bs=1 count=$((0x100)) skip=$((0xec0000)) | hexdump -C
00000000  53 43 45 49 ff ff ff ff  ff ff ff ff ff ff ff ff  |SCEIÿÿÿÿÿÿÿÿÿÿÿÿ|
00000010  ff ff ff ff ff ff ff ff  ff ff ff ff ff ff ff ff  |ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|
*
 
</pre>
 
===Flash Address Size (0x2016)===
 
* Requires enabled '''product mode''' or else service returns always error '''0x5'''
* Returns 2 64bit values: offset and size of NOR flash region
 
Test with ps3dm-utils:
<pre>
# ps3dm_um /dev/ps3dmproxy read_eprom 0x48c07
0xff
 
# ps3dm_vtrm /dev/ps3dmproxy  flash_addr_size
/dev/ps3dmproxy: SS retval 5
 
# enable product mode
 
# ps3dm_um /dev/ps3dmproxy write_eprom 0x48c07 0x0
/dev/ps3dmproxy: SS retval 0
 
# ps3dm_um /dev/ps3dmproxy read_eprom 0x48c07
0x00
 
# ps3dm_vtrm /dev/ps3dmproxy  flash_addr_size
0x0000000000000000 0x0000000000040000
</pre>
 
=Revoke List=
Crossreference: [http://wiki.gitbrew.org/wikibrew/PS3:HvReverseEngineering#Revoke_List gitbrew::Revoke List]<br />
 
==LPAR 1 System Call 0x1004A==
 
* Installs new revoke list in LV1
* LPAR 1 processes can use this syscall to install new revoke lists at runtime
* '''lv2ldr''' is loaded by LV1 and used to verify the passed revoke list
* After lv2ldr is done verifying the passed revoke list, it checks for stop code and if it's '''0xB''' then LV1 replaces the old revoke list with the new one
* If the verification of the revoke list was successfull then LV1 installs new revoke list and replaces the old one in the ISO loader table at address '''0x10100'''
 
==rvk_list_verifier==
 
* Stop code 0xB means that the passed revoke list is valid.
 
<pre>
root@debian-hdd:/home/glevand/rvk_list_verifier# cat /proc/rvk_list_verifier/debug
PPE id (0x0000000000000001) VAS id (0x0000000000000002)
lv1_construct_logical_spe (0x00000000)
SPE id (0x0000000000000033)
lv1_enable_logical_spe (0x00000000)
lv1_set_spe_interrupt_mask(0) (0x00000000)
lv1_set_spe_interrupt_mask(1) (0x00000000)
lv1_set_spe_interrupt_mask(2) (0x00000000)
lv1_set_spe_privilege_state_area_1_register (0x00000000)
ea (0xc000000003f40000) esid (0xc000000008000000) vsid (0x0000408f92c94500)
lv1_get_spe_interrupt_status(0) (0x00000000)
lv1_get_spe_interrupt_status(1) (0x00000000)
lv1_get_spe_interrupt_status(2) (0x00000000)
sleep
lv1_get_spe_interrupt_status(0) (0x00000000)
lv1_get_spe_interrupt_status(1) (0x00000000)
lv1_get_spe_interrupt_status(2) (0x00000000)
out interrupt mbox (0x0000000000000001)
lv1_clear_spe_interrupt_status(2) (0x00000000)
transferring ldr args to LS
waiting until MFC transfers are finished
MFC transfers done
out mbox (0x00000001)
sleep
lv1_get_spe_interrupt_status(0) (0x00000000)
lv1_get_spe_interrupt_status(1) (0x00000000)
lv1_get_spe_interrupt_status(2) (0x00000000)
problem status (0x000b0082)
lv1_destruct_logical_spe (0x00000000)
</pre>
 
 
{{Reverse engineering}}<noinclude>[[Category:Main]]</noinclude>
Please note that all contributions to PS3 Developer wiki are considered to be released under the GNU Free Documentation License 1.2 (see PS3 Developer wiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following hCaptcha:

Cancel Editing help (opens in new window)