Editing DualShock 3

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
== Overview ==
== Overview ==
<div style="float:right">[[File:Dual-shock-3-x-ray.jpg|400px|thumb|left|DualShock 3 X-rays photo<br>V3.5X board]]<br>[[File:PS3-sixaxis-dualshock-controller-buttons.gif|400px|thumb|left|DualShock 3 Buttons]]</div>
<div style="float:right">[[File:Dual-shock-3-x-ray.jpg|170px|thumb|left|DualShock 3 x-ray]]</div>
[[CECH-ZC2J]], [[CECH-ZC2JA]], [[CECH-ZC2JB]] <small>([[CECH-ZC2U]] <!-- Prototype: CBEH-1040U -->, [[CECH-ZC2E]], [[CECH-ZC2J]], [[CECH-ZC2H]], [[CECH-ZC2M]])</small><br />
[[CECH-ZC2J]], [[CECH-ZC2JA]], [[CECH-ZC2JB]] <small>([[CECH-ZC2U]], [[CECH-ZC2E]], [[CECH-ZC2J]], [[CECH-ZC2H]], [[CECH-ZC2M]])</small><br />
[[CECHZC2]] ([[SCPH-98050]], [[CBEH-1018]]: prototype)<br />
[[CECHZC2]] ([[SCPH-98050]], [[CBEH-1018]]: prototype)<br />
FCC ID: AK8CECHZC2 <br />
FCC ID: AK8CECHZC2 <br />
Line 28: Line 28:
! Model Number !! Name description !! Release date !! Note
! Model Number !! Name description !! Release date !! Note
|-
|-
| [[CECH-ZC2J]]    || [[File:DS3-Black.jpg|24px|Black]] Black || 2007, November 11 || Japan
| [[CECHZC2J]]    || [[File:DS3-Black.jpg|24px|Black]] Black || 2007, November 11 || Japan
|-
|-
| [[CECH-ZC2J]] SS || [[File:DS3-Satin Silver.jpg|24px|Satin Silver]] Satin Silver || 2008, March 6 || Japan
| [[CECHZC2J]] SS || [[File:DS3-Satin Silver.jpg|24px|Satin Silver]] Satin Silver   || 2008, March 6 || Japan
|-
|-
| [[CECH-ZC2J]] MB || [[File:DS3-Metallic Blue.jpg|24px|Metallic Blue]] Metallic Blue || 2009, October 29 || Japan
| [[CECH-ZC2J]] MB || [[File:DS3-Metallic Blue.jpg|24px|Metallic Blue]] Metallic Blue   || 2009, October 29 || Japan
|-
|-
| [[CECH-ZC2J]] DR || [[File:DS3-Deep Red.jpg|24px|Deep Red]] Deep Red || 2009, October 29 || Japan
| [[CECH-ZC2J]] DR || [[File:DS3-Deep Red.jpg|24px|Deep Red]] Deep red        || 2009, October 29 || Japan
|-
|-
| [[CECH-ZC2J]] LW || [[File:DS3-Classic White.jpg|24px|Classic White]] Classic White || 2010, July 29 || Japan
| [[CECH-ZC2J]] LW || [[File:DS3-Classic White.jpg|24px|Classic White]] Classic White   || 2010, July 29 || Japan
|-
|-
| [[CECH-ZC2J]] CW || [[Ceramic White]] || 2009, November 11 || Japan
| [[CECH-ZC2J]] CP || [[File:DS3-Candy Pink.jpg|24px|Candy Pink]] Candy Pink      || 2010, November 18 || Japan
|-
|-
| [[CECH-ZC2J]] CP || [[File:DS3-Candy Pink.jpg|24px|Candy Pink]] Candy Pink || 2010, November 18 || Japan
| [[CECH-ZC2J]] YB || [[File:DS3-Candy Blue.jpg|24px|Candy Blue]] Candy Blue      || 2011, April 21 || Japan
|-
|-
| [[CECH-ZC2J]] YB || [[File:DS3-Candy Blue.jpg|24px|Candy Blue]] Candy Blue || 2011, April 21 || Japan
| [[CECH-ZC2J]] JG || [[File:DS3-Jungle Green.jpg|24px|Jungle Green]] Jungle Green    || 2011, February 24 || Japan
|-
|-
| [[CECH-ZC2J]] JG || [[File:DS3-Jungle Green.jpg|24px|Jungle Green]] Jungle Green || 2011, February 24 || Japan
| [[CEJH-15017]]   || TALES OF XILLIA®2 X cross Edition || 2012, November 1 || Japan
|-
| [[CECH-ZC2J]] CM || [[File:DS3-Urban Camouflage.jpg|24px|Urban Camouflage]] Urban Camouflage || 2011, November 17 || Japan
|-
| [[CECH-ZC2J]] MG || [[File:DS3-Metallic Gold.jpg|24px|Metallic Gold]] Metallic Gold || 2012, June || Europe
|-
| [[CEJH-15017]] || [[File:TalesofXilliaController.jpg|24px|Tales of Xillia]] TALES OF XILLIA®2 X cross Edition || 2012, November 1 || Japan
|-  
|-  
| (N/A, Bundled) || [[Scarlet Red]] || 2011, November 17 || Japan
| [[CEJH-15020]]   || God of War: Ascension bundle || 2013, March 14 || Japan
|-
| (N/A, Bundled) || [[Titanium Blue]] || ||
|-
| (N/A, Bundled) || [[Splash Blue]] || 2011, November 17 || Japan
|-
| (N/A, Bundled) || [[Magical Gold]] || ||
|-
| (N/A, Bundled) || [[File:Yakuza5controller.png|24px|Yakuza Gold]] Yakuza Gold || ||
|-
| (N/A, Bundled) || [[File:FotNS.png|24px|FotNS]] Fist of the North Star|| ||
|-
|  Gunmetal Grey || [[Gunmetal Grey]] || ||
|-
|  Sand, Brown || [[File:Uncharted3controller.jpg|24px|Uncharted 3]] Uncharted 3 || 2011, November 2 || Japan
|-
| [[CEJH-15020]] || [[File:GoWAController.png|24px|God of War Ascension]] God of War: Ascension || 2013, March 14 || Japan
|-
|-
| [[CECH-ZC2J]] MY || [[File:DS3-Metallic Grey.jpg|24px|Metallic Grey]] Metallic Grey || 2013, June 20 || Japan
| [[CECH-ZC2J]] MY || [[File:DS3-Metallic Grey.jpg|24px|Metallic Grey]] Metallic Grey || 2013, June 20 || Japan
Line 74: Line 52:
| [[CECH-ZC2J]] VT || Vita TV edition (White) || 2013, November 14 || Japan
| [[CECH-ZC2J]] VT || Vita TV edition (White) || 2013, November 14 || Japan
|-
|-
| [[CECH-ZC2J]] CY || [[File:DS3-Crystal.jpg|24px|Crystal]] Crystal || 2013, December 19 || Japan
| [[CECH-ZC2J]] CY || [[File:DS3-Crystal.jpg|24px|Crystal]]Crystal || 2013, December 19 || Japan
|-
|-
| [[CECH-ZC2J]] RQX || [[File:DS3-Crimson Red.jpg|24px|Crimson Red]] Crimson Red ||  ||  
| || [[File:DS3-Crimson Red.jpg|24px|Crimson Red]] Crimson Red ||  ||  
|-
|-
| [[CECH-ZC2J]] OB || [[File:Cosmic-blue.jpg|24px|Cosmic Blue]] Cosmic Blue || ||
| || [[File:DS3-Metallic Gold.jpg|24px|Metallic Gold]] Metallic Gold || ||  
|-
|-
| (N/A, Bundled) || [[File:MGRR-blue.png|24px|MGRR Blue]] MGR Blue || 2013, February 21 || Japan
| || [[File:DS3-Slate Grey.jpg|24px|Slate Grey]] Slate Grey || ||  
|-
|-
| [[CECH-ZC2J]] BJ || [[File:DS3-Slate Grey.jpg|24px|Slate Grey]] Slate Grey |||
|  || [[File:DS3-Urban Camouflage.jpg|24px|Urban Camouflage]] Urban Camouflage ||  ||  
|-
| [[CECH-ZC2J]] BB || [[File:DS3-MLBDS3.jpg|24px|MLB]] MLB 11: The Show ||  ||  
|-
| [[CECH-ZC2J]] FTX || [[FF13]] || || Japan
|-
| [[CECH-ZC2J]] LRX || [[FF13-2]] || || Japan
|-
|-
|}
|}
Line 101: Line 73:
**R Russia
**R Russia
**T Taiwan
**T Taiwan
**U United States & Canada
**U United States
**M Mexico (seen in Anatel.br)
**M Mexico (seen in Anatel.br)


*Revisions (small letter + number after the "model number")
*Revisions (small letter + number after the "model number")
**A1 https://www.psdevwiki.com/ps3/File:2Ern4.jpg
**A1 http://i.imgur.com/2Ern4.jpg
**B1
**B1
**A2 https://www.psdevwiki.com/ps3/File:E89hU5o.jpg


== Controller Components ==
== Controller Components ==
Line 132: Line 103:
* Label on the back reads '''0604KATA2'''
* Label on the back reads '''0604KATA2'''
* Toshiba MCU is on top side of the board (in all the other models is at bottom)
* Toshiba MCU is on top side of the board (in all the other models is at bottom)
* The main board was designed without [https://www.allaboutcircuits.com/technical-articles/introduction-to-mems-gyroscopes-vibratory-gyroscope/ gyroscope] and without accelerometer sensors, it has a "children board" sticked on top manufactured by HDK (the first 2 letters of the "HDK" brand are partially visible etched on copper on the children board), this children board includes the accelerometer '''HDK HAAM 325B''' [https://www.hdk.co.jp/japanese/topics_j/tpc053_j.htm]. It outputs 3 signals on the 3 white wires "hand made" soldered to the TOSHIBA controller to retrieve the axis data. The other "hand made" soldered component uses 3 wires (black = ground, red = volts, and yellow soldered to TP26) seems to be a '''Murata ENC-03R''' Gyroscope Sensor [http://www.alldatasheet.es/datasheet-pdf/pdf/191258/MURATA/ENC-03R.html]. It seems both components was integrated later in the circuit board of the controllers labeled "sixaxis"
* The main board was designed without gyroscope and without accelerometer sensors, it has a "children board" sticked on top manufactured by HDK (the first 2 letters of the "HDK" brand are partially visible etched on copper on the children board), this children board includes the accelerometer '''HDK HAAM 325B''' [https://www.hdk.co.jp/japanese/topics_j/tpc053_j.htm]. It outputs 3 signals on the 3 white wires "hand made" soldered to the TOSHIBA controller to retrieve the axis data. The other "hand made" soldered component uses 3 wires (black = ground, red = volts, and yellow soldered to TP26) seems to be a '''Murata ENC-03R''' Gyroscope Sensor [http://www.alldatasheet.es/datasheet-pdf/pdf/191258/MURATA/ENC-03R.html]. It seems both components was integrated later in the circuit board of the controllers labeled "sixaxis"


Internally the Gyroscopic sensor for Sixaxis controllers is wired onto the board - presumably as a test for a sensor revision on a spare sample board. The sensor itself appears to be far from complete and very early.
Internally the Gyroscopic sensor for Sixaxis controllers is wired onto the board - presumably as a test for a sensor revision on a spare sample board. The sensor itself appears to be far from complete and very early.
Line 169: Line 140:
**MSU_V2 2.12
**MSU_V2 2.12
**MSU_V2 2.14
**MSU_V2 2.14
**MSU_V2.5 1.05


Notable differences
Notable differences
Line 178: Line 150:
File:MSU V2 2.14 (Top).jpg|MSU_V2 2.14<br>(Top)
File:MSU V2 2.14 (Top).jpg|MSU_V2 2.14<br>(Top)
File:MSU V2 2.14 (Bottom).jpg|MSU_V2 2.14<br>(Bottom)
File:MSU V2 2.14 (Bottom).jpg|MSU_V2 2.14<br>(Bottom)
</gallery>
===== V2.5 =====
*Models
**MSU_V2.5 1.05
**MSU_V2.5 1.06
<gallery>
File:MSU V2.5 1.05 (Top).jpg|MSU_V2.5 1.05<br>(Top)
File:MSU V2.5 1.05 (Top).jpg|MSU_V2.5 1.05<br>(Top)
File:MSU V2.5 1.05 (Bottom).jpg|MSU_V2.5 1.05<br>(Bottom)
File:MSU V2.5 1.05 (Bottom).jpg|MSU_V2.5 1.05<br>(Bottom)
Line 206: Line 170:
</gallery>
</gallery>


===== V3.5X =====
===== VX3.5X =====
*Models
*Models
**MSU_V3.5X 1.12
**MSU_V3.5X 1.12
Line 282: Line 246:
**MSU_VX7_0.04
**MSU_VX7_0.04


PCB is multilayer
<gallery>
<gallery>
File:MSU VX7 0.04 (Top).jpg|MSU_VX7_0.04<br>(Top)
File:MSU VX7 0.04 (Top).jpg|MSU_VX7_0.04<br>(Top)
Line 289: Line 252:


===== VX8 =====
===== VX8 =====
The VX8 is official, the board traces, testpoint locations, and the sensor chips has a lot of coincidences with VX7... the weird thing that is shocking is the toshiba chip and the alps bluetooth module has been replaced. The PCB has more than 2 layers (previous versions up to VX6 had only 2 layers)
<strike>There is not much info about this model, so is not clear if is the official VX8 or a third party clone of VX7</strike>The VX8 is official, the board traces, testpoint locations, and the sensor chips has a lot of coincidences with VX7... the weird thing that is shocking is the toshiba chip and the alps bluetooth module has been replaced


<gallery>
<gallery>
File:MSU VX8 0.14 (top).jpg|MSU VX8 0.14 (top)
File:MSU VX8 0.14 (top).jpg|MSU VX8 0.14 (top)
File:MSU VX8 0.14 (bottom).jpg|MSU VX8 0.14 (bottom)
File:MSU VX8 0.14 (bottom).jpg|MSU VX8 0.14 (bottom)
File:MSU VX8 unknown (Bottom).jpg|MSU_VX8_?.?? (Bottom)
File:MSU VX8 unknown (Bottom).jpg|MSU_VX8_?.??<br>(Bottom)
File:MSU VX8 0.14 BOTTOM.jpg
File:MSU VX8 0.14 BOTTOM marked.jpg
File:MSU VX8 0.14 TOP.jpg
</gallery>
</gallery>


Line 305: Line 265:


*Models
*Models
**ASUKA REV: 1.05
**ASUKA REV: 1.06
**ASUKA REV: 1.06
**ASUKA REV: 1.07
**ASUKA REV: 1.07
Line 318: Line 277:


=== Ribbon Circuit Boards ===
=== Ribbon Circuit Boards ===
For any arcade stick builders soldering to the vias on the PCB board (in the models where there are no testpoints availables) isn't exactly the easiest thing to do, using the copper contacts for the ribbon board is really the best option. In some board models (VX3, VX4, VX5, VX6, VX8) the copper contacts are covered by a black carbon material that needs to be removed if these spots are to be used to solder in them, this can be done with an X-acto knife or some fine sandpaper, just be careful and when you get to the shiny copper, STOP, you're done. Tin it up with some solder and there are your spots to use. Try and use a 30awg wire, or 28awg at the largest, and make sure to secure the wiring with some hot glue after you make the connection, but don't glue over the solder joint you just made, secure the wire to the board back from the solder joint, in case you ever have to get to it again for any reason.
The pull-up 7.5k Resistors ("printed" on the ribbon circuit boards) also need to be put back in the circuit as they're built into the ribbon board and when it's removed they're not, and the controller will act up on you if these are not in the circuit. There needs to be 2 of these pull-up resistors installed, one goes from V_STBY to COM1, the other goes from V_STBY to COM2. If you don't have any 7.5k resistors you can use anything from 6.8k to 10k really, but they do need to be installed since the ribbon board is removed when building an arcade stick, all of the PS3 controllers are setup this way and need those pull-up resistors if the ribbon board is removed


{| class="wikitable" border="1"
{| class="wikitable" border="1"
Line 329: Line 285:
|-
|-
| VX || SA1Q146A ||  || The first dualshock 3 model
| VX || SA1Q146A ||  || The first dualshock 3 model
|-
| VX || SA1Q147A ||  || Found in a CECHZC2U (USA)
|-
|-
| ? || SA1Q159A || rowspan="4" {{Yes}} ||  
| ? || SA1Q159A || rowspan="4" {{Yes}} ||  
|-
|-
|VX3 || SA1Q160A ||  
| ? || SA1Q160A ||  
|-
|-
| ? || SA1Q188A ||  
| ? || SA1Q188A ||  
Line 342: Line 296:
| VX5 || SA1Q194A ||  || not compatible with previous models, PS button changes
| VX5 || SA1Q194A ||  || not compatible with previous models, PS button changes
|-
|-
| VX6 || SA1Q195A ||  ||  
| ? || SA1Q195A ||  ||  
|-
|-
| VX7 ? || SA1Q222A || rowspan="2" {{Yes}}  || superslims date ?. Is composed by 2 separated ribbons
| VX7 ? || SA1Q222A || rowspan="2" {{Yes}}  || superslims date ?. Is composed by 2 separated ribbons
Line 355: Line 309:


==== SA1Q146A ====
==== SA1Q146A ====
==== SA1Q147A ====


==== SA1Q159A ====
==== SA1Q159A ====
Line 376: Line 328:


==== SA1Q189A ====
==== SA1Q189A ====
<gallery>
File:SA1Q189A.jpg|Dualshock 3 Ribbon Circuit Board SA1Q189A
</gallery>


==== SA1Q194A ====
==== SA1Q194A ====
Line 386: Line 335:


==== SA1Q195A ====
==== SA1Q195A ====
<gallery>
File:Dualshock 3 Ribbon Circuit Board SA1Q195A.jpg|Dualshock 3 Ribbon Circuit Board SA1Q195A
</gallery>


==== SA1Q222A ====
==== SA1Q222A ====
Line 419: Line 365:
==== MK11-2902 ====
==== MK11-2902 ====
3.7V 610mAh
3.7V 610mAh
==== MK11-3023 ====
==== MK11-3020 ====
3.7V 570mAh (typ. 610mAh)
3.7V 570mAh (typ. 610mAh)


Line 453: Line 399:


=== Memory (EEPROM) ===
=== Memory (EEPROM) ===
All the EEPROMS uses the TSSOP 8-Pin package, the first ones uses [https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi SPI protocol] and last one [https://learn.sparkfun.com/tutorials/i2c I2C protocol]. Are located the most closer posible to the toshiba controller (the master of the SPI channel), in the opposite side of the board aligned to a border of it
The EEPROM is located the most closer posible to the toshiba controller, usually in the opposite side of the board where the toshiba controller is located, aligned to a border of it
 
If you scroll down this wiki page a bit you will notice the pinout of the first EEPROM is the same than the next ones, the pinout tables are repeated for convenience, in the case of the Renesas 504E it was used in boards PP1, PP4, V2, V2.5, VX, V3.5X but that boards had different versions of the toshiba MCU (T6UM'''2'''EFG-0'''103''', T6UM'''3'''EFG-00'''1''', T6UN'''6'''EFG-00'''1''', T6UN'''6'''EFG-00'''2'''), some pins of that component was remapped at some point, probably this changes never affected the EEPROM pins (so this info about the toshiba pinout could be removed from here because can be seen in the [[Template:Toshiba T6UN6EFG Pinout]]), but by now are kept here inside the EEPROM pinout tables just incase someone needs or wants to add accurate pin-to-pin details of an specific board model. If at some point it can be verifyed that all EEPROM pins are connected to the same toshiba MCU pins in all the board models then it will be better to replace all duplicated EEPROM pinout tables by a single one but until that happens is better this way. Also the tables can be used to add info about the board testpoints, new board models doesnt have testpoints for EEPROM lines but is posible some old models have them, in that case this tables can be used to add info about them (while rushing as i did) and later move that EEPROM testpoint info to [[Template:PlayStation 3 controller PCB TestPoints]]


==== Renesas 504E ====
==== Renesas 504E ====
<div style="float:right">[[File:Renesas 504E.jpg|200px|thumb|right|Renesas 504E]]</div>
<div style="float:right">[[File:Renesas 504E.jpg|200px|thumb|right|Renesas 504E]]</div>
Used in boards: PP1, PP4, V2, V2.5 (all prototypes and retail sixasix models), VX, V3.5X (the first dualshock 3 models)
Renesas HN58X2504TIE
*Renesas HN58X2504I
*https://www.renesas.com/en-eu/products/memory/eeprom/device/HN58X2504TI.html
*https://www.renesas.com/en-eu/doc/products/memory/rej03c0061_hn58x250204i.pdf


4k EEPROM (512-word × 8-bit). It realizes high speed, low power consumption and a high level of reliability by employing advanced MONOS memory technology and CMOS process and low voltage circuitry technology. It also has a 16-byte page programming function to make it’s write operation faster
https://www.renesas.com/en-eu/products/memory/eeprom/device/HN58X2504TI.html https://www.renesas.com/en-eu/doc/products/memory/rej03c0061_hn58x250204i.pdf


{| class="wikitable"
{| class="wikitable"
Line 470: Line 411:
! Pin !! Name !! Notes
! Pin !! Name !! Notes
|-
|-
| 1 || {{cellcolors|#d699ff}} EEPROM_SELECT || To Toshiba '''T6UN*EFG pin ?'''
| 1 || ||  
|-
|-
| 2 || {{cellcolors|#d699ff}} EEPROM_<abbr title="Master-In Slave-Out">SPI_MISO</abbr> || To Toshiba '''T6UN*EFG pin ?'''
| 2 || ||  
|-
|-
| 3 || {{cellcolors|#ff9933}} <abbr title="Write protect">V_STBY</abbr> || To '''Standby power''' rail
| 3 || {{cellcolors|#ff9933}} V_STBY ? ||  
|-
|-
| 4 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
| 4 || ||  
|-
|-
| 5 || {{cellcolors|#d699ff}} EEPROM_<abbr title="Master-Out Slave-In">SPI_MOSI</abbr> || To Toshiba '''T6UN*EFG pin ?'''
| 5 || ||  
|-
|-
| 6 || {{cellcolors|#d699ff}} EEPROM_<abbr title="Master clock">SPI_CLOCK</abbr> || To Toshiba '''T6UN*EFG pin ?'''
| 6 || ||  
|-
|-
| 7 || {{cellcolors|#ff9933}} <abbr title="Hold">V_STBY</abbr> || rowspan="2" | To '''Standby power''' rail
| 7 || {{cellcolors|#ff9933}} V_STBY ? ||  
|-
|-
| 8 || {{cellcolors|#ff9933}} V_STBY
| 8 || {{cellcolors|#ff9933}} V_STBY ? ||
|}
|}


==== Seiko Instruments S25C ====
==== Seiko Instruments S25C ====
<div style="float:right">[[File:Seiko Instruments S25C 040A.jpg|200px|thumb|right|Seiko Instruments S25C 040A]]</div>
<div style="float:right">[[File:Seiko Instruments S25C 040A.jpg|200px|thumb|right|Seiko Instruments S25C 040A]]</div>
Used in boards: VX3, VX4, VX5, VX6
*Seiko Instruments S-25C040A 8-Pin TSSOP
*Seiko Instruments S-25C040A
*http://www.sii-ic.com/en/semicon/datasheets/memory/general-serial-eeprom/s-25c010a-020a-040a/
*http://www.sii-ic.com/en/semicon/datasheets/memory/general-serial-eeprom/s-25c010a-020a-040a/
*http://datasheet.sii-ic.com/en/serial_eeprom/S25C010A_020A_040A_E.pdf
*http://datasheet.sii-ic.com/en/serial_eeprom/S25C010A_020A_040A_E.pdf


The S-25C040A is a SPI serial EEPROM which operate at high speed, with low current consumption and the wide range operation. Has 4 K-bit capacity and the organization of 512 words × 8-bit. Page write and sequential read are available
The S-25C040A is a SPI serial EEPROM which operate at high speed, with low current consumption and the wide range operation


{| class="wikitable"
Has 4 K-bit capacity and the organization of 128 words × 8-bit, 256 words × 8-bit, 512 words × 8-bit. Page write and sequential read are available
|-
 
! Pin !! Name !! Notes
[[File:Seiko Instruments S-25C040A0I-T8T1G pinout.jpg|600px|thumb|left|Seiko Instruments S-25C040A0I-T8T1G pinout]]
|-
<div style="clear:both;"></div>
| 1 || {{cellcolors|#d699ff}} EEPROM_SELECT || To Toshiba '''T6UN6EFG''' (pin '''31''' in VX5)
|-
| 2 || {{cellcolors|#d699ff}} EEPROM_<abbr title="Master-In Slave-Out">SPI_MISO</abbr> || To Toshiba '''T6UN6EFG''' (pin '''35''' in VX5)
|-
| 3 || {{cellcolors|#ff9933}} <abbr title="Write protect">V_STBY</abbr> || To '''Standby power''' rail
|-
| 4 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
|-
| 5 || {{cellcolors|#d699ff}} EEPROM_<abbr title="Master-Out Slave-In">SPI_MOSI</abbr> || To Toshiba '''T6UN6EFG''' (pin '''34''' in VX5)
|-
| 6 || {{cellcolors|#d699ff}} EEPROM_<abbr title="Master clock">SPI_CLOCK</abbr> || To Toshiba '''T6UN6EFG''' (pin '''30''' in VX5)
|-
| 7 || {{cellcolors|#ff9933}} <abbr title="Hold">V_STBY</abbr> || rowspan="2" | To '''Standby power''' rail
|-
| 8 || {{cellcolors|#ff9933}} V_STBY
|}


==== STMicroelectronics 504RP ====
==== STMicroelectronics 504RP ====
<div style="float:right">[[File:STMicroelectronics 504RP.jpg|200px|thumb|right|STMicroelectronics 504RP]]</div>
<div style="float:right">[[File:STMicroelectronics 504RP.jpg|200px|thumb|right|STMicroelectronics 504RP]]</div>
Used in boards: VX4, VX5, VX6, VX7
http://www.st.com/content/st_com/en/products/memories/serial-eeprom/standard-serial-eeprom/standard-spi-eeprom/m95040-r.html ?
*STMicroelectronics M95040-RP
*http://www.st.com/content/st_com/en/products/memories/serial-eeprom/standard-serial-eeprom/standard-spi-eeprom/m95040-r.html
*http://www.st.com/resource/en/datasheet/m95040-r.pdf
* bin file VX5.bin
4 Kbit (512x8 bits) serial SPI bus EEPROM with high-speed clock


{| class="wikitable"
{| class="wikitable"
Line 530: Line 449:
! Pin !! Name !! Notes
! Pin !! Name !! Notes
|-
|-
| 1 || {{cellcolors|#d699ff}} EEPROM_SELECT || To Toshiba '''T6UN6EFG''' (pin '''31''' in VX4)
| 1 || {{cellcolors|#d699ff}} EEPROM_SELECT || To Toshiba '''T6UN6EFG, pin 31'''
|-
|-
| 2 || {{cellcolors|#d699ff}} EEPROM_<abbr title="Master-In Slave-Out">SPI_MISO</abbr> || To Toshiba '''T6UN6EFG''' (pin '''35''' in VX4)
| 2 || {{cellcolors|#d699ff}} EEPROM_DATA_OUT || To Toshiba '''T6UN6EFG, pin 35'''
|-
|-
| 3 || {{cellcolors|#ff9933}} <abbr title="Write protect">V_STBY</abbr> || To '''Standby power''' rail
| 3 || {{cellcolors|#ff9933}} V_STBY || '''2.8V Standby'''. Power for {{padps}}, LED's, EEPROM, etc...
|-
|-
| 4 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
| 4 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
|-
|-
| 5 || {{cellcolors|#d699ff}} EEPROM_<abbr title="Master-Out Slave-In">SPI_MOSI</abbr> || To Toshiba '''T6UN6EFG''' (pin '''34''' in VX4)
| 5 || {{cellcolors|#d699ff}} EEPROM_DATA_IN || To Toshiba '''T6UN6EFG, pin 34'''
|-
|-
| 6 || {{cellcolors|#d699ff}} EEPROM_<abbr title="Master clock">SPI_CLOCK</abbr> || To Toshiba '''T6UN6EFG''' (pin '''30''' in VX4)
| 6 || {{cellcolors|#d699ff}} EEPROM_CLOCK || To Toshiba '''T6UN6EFG, pin 30'''
|-
|-
| 7 || {{cellcolors|#ff9933}} <abbr title="Hold">V_STBY</abbr> || rowspan="2" | To '''Standby power''' rail
| 7 || {{cellcolors|#ff9933}} V_STBY || rowspan="2" | '''2.8V Standby'''. Power for {{padps}}, LED's, EEPROM, etc...
|-
|-
| 8 || {{cellcolors|#ff9933}} V_STBY
| 8 || {{cellcolors|#ff9933}} V_STBY
Line 549: Line 468:
==== STMicroelectronics 432RK ====
==== STMicroelectronics 432RK ====
<div style="float:right">[[File:STMicroelectronics 432RK.jpg|200px|thumb|right|STMicroelectronics 432RK]]</div>
<div style="float:right">[[File:STMicroelectronics 432RK.jpg|200px|thumb|right|STMicroelectronics 432RK]]</div>
Used in board: VX8 only
*STMicroelectronics M24C32-RK
*http://www.st.com/content/st_com/en/products/memories/serial-eeprom/standard-serial-eeprom/standard-i2c-eeprom/m24c32-r.html
*http://www.st.com/resource/en/datasheet/m24c32-r.pdf
The M24C32 is a 32-Kbit I2C-compatible EEPROM (Electrically Erasable PROgrammable Memory) organized as 4 K × 8 bits


{| class="wikitable"
{| class="wikitable"
Line 560: Line 473:
! Pin !! Name !! Notes
! Pin !! Name !! Notes
|-
|-
| 1 || {{cellcolors|#000000|#ffffff}} <abbr title="E0 Chip enable">GND</abbr> || rowspan="4" | To '''ground'''
| 1 || {{cellcolors|#000000|#ffffff}} GND ? ||  
|-
|-
| 2 || {{cellcolors|#000000|#ffffff}} <abbr title="E1 Chip enable">GND</abbr>
| 2 || {{cellcolors|#000000|#ffffff}} GND ? ||
|-
|-
| 3 || {{cellcolors|#000000|#ffffff}} <abbr title="E2 Chip enable">GND</abbr>
| 3 || {{cellcolors|#000000|#ffffff}} GND ? ||
|-
|-
| 4 || {{cellcolors|#000000|#ffffff}} GND
| 4 || {{cellcolors|#000000|#ffffff}} GND ? ||
|-
|-
| 5 || {{cellcolors|#d699ff}} EEPROM_<abbr title="Serial data">I2C_SDA</abbr> || To <abbr title="the toshiba main MCU was replaced in VX8">Unknown MCU</abbr>, pin ?
| 5 || {{cellcolors|#d699ff}} EEPROM ? || To Toshiba '''T6UN6EFG, pin ?'''
|-
|-
| 6 || {{cellcolors|#d699ff}} EEPROM_<abbr title="Serial clock">I2C_SCL</abbr> || To <abbr title="the toshiba main MCU was replaced in VX8">Unknown MCU</abbr>, pin ?
| 6 || {{cellcolors|#d699ff}} EEPROM ? || To Toshiba '''T6UN6EFG, pin ?'''
|-
|-
| 7 || {{cellcolors|#d699ff}} EEPROM_<abbr title="Write control">I2C_WC</abbr> || To <abbr title="the toshiba main MCU was replaced in VX8">Unknown MCU</abbr>, pin ?
| 7 || {{cellcolors|#d699ff}} EEPROM ? || To Toshiba '''T6UN6EFG, pin ?'''
|-
|-
| 8 || {{cellcolors|#ff9933}} V_STBY || To '''Standby power''' rail ?
| 8 || {{cellcolors|#ff9933}} V_STBY ?
|}
|}


Line 597: Line 510:


The reason why sony chose this component (even being over the requirements of the playtation 3 controller) is because seems to be very accurate in voltage regulations and it has some additional features to control and monitor the charging processes
The reason why sony chose this component (even being over the requirements of the playtation 3 controller) is because seems to be very accurate in voltage regulations and it has some additional features to control and monitor the charging processes
*'''Battery pre-conditioning'''
**If the battery voltage falls below a threshold during a charge cycle, the bqTINY-II applies a precharge current to the battery. This feature revives deeply discharged cells. The resistor connected between the '''ISET1''' and VSS determines the precharge rate. The bqTINY-II activates a safety timer during the conditioning phase. If threshold is not reached within the timer period, the bqTINY-II turns off the charger and asserts a FAULT code on the STATx pins
*'''Battery charge current'''
**The bqTINY-II offers on-chip current regulation with a programmable set point. The resistor connected between the '''ISET1''' and VSS determines the AC charge rate
*'''Battery voltage regulation'''
**The voltage regulation feedback is through the OUT pin. This input is tied directly to the positive side of the battery pack. The bqTINY-II monitors the battery-pack voltage between the OUT and VSS pins. When the battery voltage rises to a threshold, the voltage-regulation phase begins and the charging current begins to taper down. As a safety backup, the bqTINY-II also monitors the charge time. If the charge is not terminated within a time period the bqTINY-II turns off the charger and asserts a FAULT code on the STATx pins
*'''Charge taper detection, termination, and recharge'''
**The bqTINY-II monitors the charging current during the voltage-regulation phase. Once the taper threshold is detected, the bq24027 terminates the charge. There is no taper timer for this version. The resistor connected between the '''ISET1''' and VSS determines the taper-detect level for AC input. In addition to taper-current detection, the bqTINY-II terminates charge if the charge current falls below the a threshold. This feature allows quick recognition of a battery-removal condition, or insertion of a fully charged battery. Note that the charge timer is bypassed for this feature. The resistor connected between the '''ISET1''' and VSS determines the taper detection level
*'''Sleep mode'''
**The bqTINY-II enters low-power sleep mode if both AC and USB are removed from the circuit. This feature prevents draining the battery in the absence of input supply


{| class="wikitable"
{| class="wikitable"
Line 621: Line 519:
| 2 || {{cellcolors|lightgrey}} N/C ?  || <abbr title="USB connector in the datasheet, but in the playstation controller this is unconnected so if you read the datahseet keep in mind all the references to USB specific features are not used here">Power source 2</abbr>
| 2 || {{cellcolors|lightgrey}} N/C ?  || <abbr title="USB connector in the datasheet, but in the playstation controller this is unconnected so if you read the datahseet keep in mind all the references to USB specific features are not used here">Power source 2</abbr>
|-
|-
| 3 || {{cellcolors|#009900}} <abbr title="STAT1">BATT_STATUS_1</abbr> || Battery charge status output 1 (open-drain). To Toshiba main controller ? (and '''TP8''' in PP1 prototype)
| 3 || {{cellcolors|#00b33c}} <abbr title="STAT1">BATT_STATUS_1</abbr> || Battery charge status output 1 (open-drain). To Toshiba main controller ? (and '''TP8''' in PP1 prototype)
|-
|-
| 4 || {{cellcolors|#009900}} <abbr title="STAT2">BATT_STATUS_2</abbr> || Battery charge status output 2 (open-drain). To Toshiba main controller ? (and '''TP10''' in PP1 prototype)
| 4 || {{cellcolors|#00b33c}} <abbr title="STAT2">BATT_STATUS_2</abbr> || Battery charge status output 2 (open-drain). To Toshiba main controller ? (and '''TP10''' in PP1 prototype)
|-
|-
| 5 || {{cellcolors|#000000|#ffffff}} GND ? || To '''ground'''
| 5 || {{cellcolors|#000000|#ffffff}} GND ? || To '''ground'''
|-
|-
| 6 || {{cellcolors|#007700}} <abbr title="ISET1">BATT_CHARGE_SETPOINT</abbr> || <abbr title="voltage current setpoint for: precharge, charge, and taper functions">resistors and transistor</abbr> to toshiba main controller ?. (and '''TP64''' in PP1 prototype)
| 6 || {{cellcolors|#00b33c}} <abbr title="ISET1">BATT_CHARGE_SETPOINT</abbr> || <abbr title="voltage current setpoint for: precharge, charge, and taper functions">resistors and transistor</abbr> to toshiba main controller ?. (and '''TP64''' in PP1 prototype)
|-
|-
| 7 || {{cellcolors|#000000|#ffffff}} <abbr title="ISET2... seems to be grounded for 100mA... Charge current set point for USB port (high=500 mA, low=100mA, hi-z=disable USB charge)">GND</abbr> ? || To '''ground'''
| 7 || {{cellcolors|#000000|#ffffff}} <abbr title="ISET2... seems to be grounded for 100mA... Charge current set point for USB port (high=500 mA, low=100mA, hi-z=disable USB charge)">GND</abbr> ? || To '''ground'''
|-
|-
| 8 || {{cellcolors|#008800}} <abbr title="PG">BATT_USB_POWER_GOOD</abbr> || USB power presence detector output (active low). To Toshiba main controller ? (and '''TP6''' in PP1 prototype)
| 8 || {{cellcolors|#00b33c}} <abbr title="PG">BATT_USB_POWER_GOOD</abbr> || USB power presence detector output (active low). To Toshiba main controller ? (and '''TP6''' in PP1 prototype)
|-
|-
| 9 || {{cellcolors|#008800}} <abbr title="CE">BATT_CHARGE_START</abbr> || <abbr title="TTL-level charge-enable input used to disable or enable the charge process">Battery charge enable input (active low)</abbr>. To Toshiba main controller ? (<abbr title="This is fully speculative though, it cant be verifyed by looking at the photos availables, but is higly probable based in the numbers of the other testpoints used to check battery">and '''TP7''' in PP1 prototype ?</abbr>)
| 9 || {{cellcolors|#00b33c}} <abbr title="CE">BATT_CHARGE_START</abbr> || <abbr title="TTL-level charge-enable input used to disable or enable the charge process">Battery charge enable input (active low)</abbr>. To Toshiba main controller ? (<abbr title="This is fully speculative though, it cant be verifyed by looking at the photos availables, but is higly probable based in the numbers of the other testpoints used to check battery">and '''TP7''' in PP1 prototype ?</abbr>)
|-
|-
| 10 || {{cellcolors|#ff3333}} V_BATT ? || Connected to battery + (and '''TP5''' in PP1 prototype)
| 10 || {{cellcolors|#ff3333}} V_BATT ? || Connected to battery + (and '''TP5''' in PP1 prototype)
|}
|}


*'''PG''': The open-drain PG (Power Good, pin 8) indicates when the "power source 1" (pin 1) is present. The output turns ON when a valid voltage is detected. This output is turned off in the sleep mode. The PG pin can be used to drive a LED or to communicate to the host processor
*PG
**The open-drain PG (power Good) indicates when the AC adapter is present. The output turns ON when a valid voltage is detected. This output is turned off in the sleep mode. The PG pin can be used to drive an LED or to communicate to the host processor.


*'''CE''': The CE digital input (Charge Enable, pin 9) is used to disable or enable the charge process. A low-level signal on this pin enables the charge. A high-level signal disables the charge, and places the device in a low-power mode. A high-to-low transition on this pin also resets all timers and timer fault conditions
*CE
**The CE digital input is used to disable or enable the charge process. A low-level signal on this pin enables the charge. A high-level signal disables the charge, and places the device in a low-power mode. A high-to-low transition on this pin also resets all timers and timer fault conditions. Note that this applies to both AC and USB charging.


*'''ISET1''': The bqTINY-II offers on-chip current regulation with a programmable set point. The resistor connected between the ISET1 and VSS, determines the "power source 1" charge rate
*ISET1
**The bqTINY-II offers on-chip current regulation with a programmable set point. The resistor connected between the ISET1 and Vss , Rset , determines the AC charge rate. The V(set) and K(set) parameters are specified in the specifications table


*'''STAT1''' and '''STAT2''': The open-drain STAT1 and STAT2 outputs indicate various charger operations as shown in the following table. These status pins can be used to drive LEDs or communicate to the host processor. Note that OFF indicates the open-drain transistor is turned off
*ISET2
**When charging from a USB port, the host controller has the option of selecting either a 100-mA or a 500-mA charge rate using the ISET2 pin. A low-level signal sets the current at 100 mA, and a high-level signal sets the current at 500 mA. A high-Z input disables USB charging
 
*STAT1 and STAT2
**The open-drain STAT1 and STAT2 outputs indicate various charger operations as shown in the following table. These status pins can be used to drive LEDs or communicate to the host processor. Note that OFF indicates the open-drain transistor is turned off


{| class="wikitable"
{| class="wikitable"
Line 655: Line 560:
|-
|-
| Charge done || OFF || ON
| Charge done || OFF || ON
|-
| Charge suspend (temperature) || OFF || OFF
|-
| Timer fault || OFF || OFF
|-
|-
| Sleep mode || OFF || OFF
| Sleep mode || OFF || OFF
|}
|}
*BATTERY PRE-CONDITIONING
**If the battery voltage falls below a threshold during a charge cycle, the bqTINY-II applies a precharge current to the battery. This feature revives deeply discharged cells. The resistor connected between the '''ISET1''' and VSS determines the precharge rate. Note that this applies to both AC and USB charging. The bqTINY-II activates a safety timer during the conditioning phase. If threshold is not reached within the timer period, the bqTINY-II turns off the charger and asserts a FAULT code on the STATx pins
*BATTERY CHARGE CURRENT
**The bqTINY-II offers on-chip current regulation with a programmable set point. The resistor connected between the '''ISET1''' and VSS determines the AC charge rate
*BATTERY VOLTAGE REGULATION
**The voltage regulation feedback is through the OUT pin. This input is tied directly to the positive side of the battery pack. The bqTINY-II monitors the battery-pack voltage between the OUT and VSS pins. When the battery voltage rises to a threshold, the voltage-regulation phase begins and the charging current begins to taper down. As a safety backup, the bqTINY-II also monitors the charge time. If the charge is not terminated within a time period the bqTINY-II turns off the charger and asserts a FAULT code on the STATx pins
*CHARGE TAPER DETECTION, TERMINATION AND RECHARGE
**The bqTINY-II monitors the charging current during the voltage-regulation phase. Once the taper threshold is detected, the bq24027 terminates the charge. There is no taper timer for this version. The resistor connected between the '''ISET1''' and VSS determines the taper-detect level for AC input. In addition to taper-current detection, the bqTINY-II terminates charge if the charge current falls below the a threshold. This feature allows quick recognition of a battery-removal condition, or insertion of a fully charged battery. Note that the charge timer is bypassed for this feature. The resistor connected between the ISET1 and VSS determines the taper detection level
*SLEEP MODE
**The bqTINY-II enters low-power sleep mode if both AC and USB are removed from the circuit. This feature prevents draining the battery in the absence of input supply


==== NEC 871Y03 ====
==== NEC 871Y03 ====
<div style="float:right">[[File:NEC 871Y03.jpg|200px|thumb|right|NEC 871Y03]]</div>
<div style="float:right">[[File:NEC 871Y03.jpg|200px|thumb|right|NEC 871Y03]]</div>
20 pins. Used in boards: V2, V2.5, (last sixaxis models) and VX (first dualshock 3 model)
 
Works as a replacement of the Texas Instruments BKO ?
<div style="clear:both;"></div>
 
==== Texas Instruments B029 and B029A ====
<div style="float:right">[[File:Texas Instruments B029.jpg|200px|thumb|left|Texas Instruments B029]][[File:Texas Instruments B029A.jpg|200px|thumb|right|Texas Instruments B029A]]</div>
20 pins
 
Pin 3 is connected to "reset switch" (SW1), when reset switch is pressed this pin is connected to ground
<div style="clear:both;"></div>
 
==== Texas Instruments R2A20060 and SN89062 ====
<div style="float:right">[[File:Texas Instruments R2A20060.jpg|200px|thumb|left|Texas Instruments R2A20060]][[File:Texas Instruments SN89062.jpg|200px|thumb|right|Texas Instruments SN89062]]</div>
24 pins. Used in boards: VX3, VX4, VX6, VX7 (R2A20060 is used in VX4 0.09 boards only and seems to be an early version/prototype of SN89062, both has the same pinout)


{| class="wikitable"
{| class="wikitable"
Line 667: Line 604:
! Pin !! Name !! Notes
! Pin !! Name !! Notes
|-
|-
| 1 || || (Resistor R2 in VX board)
| 1 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
|-
|-
| 2 || || (Resistor R2, Fuse SW3, (not mounted) capaitor C59 to ground, and TP13 in VX board)
| 2 || {{cellcolors|#00b33c}} battery charge enable ? || To Toshiba '''T6UN6EFG, pin 43'''
|-
|-
| 3 || {{cellcolors|#ff9933}} V_STBY || (to ribbon circuit board pins 8 and 14)
| 3 || {{cellcolors|#666666|#ffffff}} RESET_SWITCH || To '''SW1''', when reset switch is pressed this pin is grounded
|-
| 4 || BT related ? || To Toshiba '''T6UN6EFG, pin 13'''. And 47K resistor to pin 22
|-
|-
| 4 || {{cellcolors|#ff9933}} V_SENSORS ? || ('''TP12''' in V2.5 board)
| 5 || {{cellcolors|#00b33c}} battery powergood ? || To Toshiba '''T6UN6EFG, pin 42'''
|-
|-
| 5 || || (Resistor R53 to ground,Diode D2(pin 1)in VX board)
| 6 || {{cellcolors|#ff3333}} V_USB || '''USB +5V'''. (and connected to '''TP1''' in VX4 boards)
|-
|-
| 6 || || (('''TP60''')(VX board))
| 7 || {{cellcolors|#ff9933}} V_BT ? || To '''BT module'''. (ALPS 413A pin 3, and '''TP10''' in VX4 boards). This pin doesnt seems to have voltage either with the controller in standby or working though
|-
|-
| 7 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
| 8 || {{cellcolors|#ff9933}} V_MOTORS || Connected to 2x '''"KEX"''' small components (voltage regulators ?, 5 pins), "BM+1" ('''Big Motor +''') and "SM+1" ('''Small Motor +'''). (and '''TP42''' in VX4 boards)
|-
|-
| colspan="3" {{cellcolors|lightgrey}}
| colspan="3" {{cellcolors|lightgrey}}
|-
|-
| 8 || || (Pin 42 BATT_USB_POWER_GOOD in VX board)
| 9 || {{cellcolors|lightgrey}} N/C ? || Not connected ? (dissapears under the component and doesnt seems to continue)
|-
| 10 || {{cellcolors|#00b33c}} BATT_CHARGE_STATUS_1 ? || To Toshiba '''T6UN6EFG, pin 44''' (and '''TP8''' in VX4 boards)
|-
|-
| 9 || || capacitor network to ground (CN11 in V2.5 boards), and unknown...
| 11 || {{cellcolors|lightgrey}} N/C ? || Not connected ? (dissapears under the component and doesnt seems to continue)
|-
|-
| 10 || || capacitor network to ground (CN11 in V2.5 boards), and unknown...
| 12 || {{cellcolors|#00b33c}} BATT_CHARGE_STATUS_2 ? || To Toshiba '''T6UN6EFG, pin 45''' (and '''TP9''' in VX4 boards)
|-
|-
| colspan="3" {{cellcolors|lightgrey}}
| colspan="3" {{cellcolors|lightgrey}}
|-
|-
| 11 ||  || (RN9 in VX board) to unknown...
| 13 ||  || To '''BT module pin 37'''. And to 47K resistor to ground
|-
| colspan="3" {{cellcolors|lightgrey}}
|-
|-
| 12 ||  ||  
| 14 ||  || To '''BT module pin 16'''. And to 47K resistor to pin 22
|-
|-
| 13 ||  || capacitor (CN10 to ground in VX board), and unknown...
| 15 ||  || To '''BT module pin 38'''. And capacitor to ground
|-
|-
| 14 || || capacitor (CN10 to ground in VX board), and unknown...
| 16 || {{cellcolors|#ff3333}} V_BATT || 4.12V from '''Battery +''' pin, and capacitor to ground, and 147K resistor to Toshiba T6UN6EFG pin 4 (and connected to '''TP14''' in VX4 boards)
|-
|-
| 15 || || capcitor (C11 to ground in VX board)
| 17 || sticks related ? || To Toshiba '''T6UN6EFG, pin 36'''
|-
|-
| 16 || ||  
| 18 || V_CAP_1 || 0.970uf '''Capacitor''' to ground (meassured onboard so maybe not accurate)
|-
|-
| 17 ||  || Resistor (R3 in VX board)
| 19 ||  || To '''BT module pin 15'''. And to 47K resistor to ground
|-
|-
| colspan="3" {{cellcolors|lightgrey}}
| 20 || V_CAP_2 || 1.950uf '''Capacitor''' to ground (meassured onboard so maybe not accurate)
|-
|-
| 18 || || resistor (R3 in V2.5 boards), and unknown...,
| 21 || {{cellcolors|#00b33c}} <abbr title="named ISET1 in the datasheet of the texas instrument BKO used in the prototype PP1 board">BATT_CHARGE_MODE</abbr> || Blue resistor to ground (labeled R2), and to blue 2.67K resistor (labeled R1) then to '''DP''' transistor (labeled Q1) (and the transistor base is connected to Toshiba '''T6UN6EFG, pin 41''')
|-
|-
| colspan="3" {{cellcolors|lightgrey}}
| 22 || {{cellcolors|#ff9933}} V_STBY || '''2.8V standby''' shared rail for Toshiba, BT, PS button, LED's, EEPROM, etc... (and connected to '''TP11''' in VX4 boards)
|-
|-
| 19 || {{cellcolors|#ff3333}} V_BATT ? || rowspan="2" | Connected together to a power rail ('''TP5''' in V2.5 board)
| 23 || {{cellcolors|#ff9933}} V_SENSORS || '''2.8V for accelerometer and gyroscope''' (Switched, no voltage in standby). (and connected to '''TP12''' in VX4 boards)
|-
|-
| 20 || {{cellcolors|#ff3333}} V_BATT ?
| 24 || {{cellcolors|#ff9933}} V_STICKS || '''2.8V for 4x stick pots''' (Switched, no voltage in standby). (and connected to '''TP13''' in VX4 boards)
|}
|}
*Notes
**This component seems to provide with several voltages to the BT module that i could not identify... probably are for the different components inside the BT module
**The connections with the toshiba controller probably are to provide voltages for the subcircuits inside it. There must be at least one exception because the toshiba is the "boss" of the board so it needs to be able to send some controll signal to this component to enable/disable power rails and things like that
**<strike>The toshiba controller probably is connected to the battery + or/and the 5V USB (so it should work even if this component is disabled because this one is a slave), is just i have not tryed to find all the pins of the toshiba chip</strike>, wrong, the toshiba chip is not connected to battery/USB, it seems to be connected only to "low voltage" lines
----
=== Sticks control ===


==== Texas Instruments B029 and B029A ====
==== Texas Instruments YA018 ====
<div style="float:right">[[File:Texas Instruments B029.jpg|200px|thumb|left|Texas Instruments B029]][[File:Texas Instruments B029A.jpg|200px|thumb|right|Texas Instruments B029A]]</div>
<div style="float:right">[[File:Texas Instruments YA018.jpg|200px|thumb|right|Texas Instruments YA018]]<br>[[File:Texas Instruments YA018 pinout.jpg|200px|thumb|right|Texas Instruments YA018 pinout]]</div>
20 pins. Used in boards: V3.5X and VX3
16 pins. Used in PP4 boards (the first retail sixaxis models)
*Texas Instruments TS3A5018 TSSOP package
*http://www.ti.com/product/TS3A5018
*http://www.ti.com/lit/ds/symlink/ts3a5018.pdf
 
The TS3A5018 is a quad single-pole-double-throw ([https://en.wikipedia.org/wiki/Switch#Contact_terminology SPDT]) bidirectional solid-state analog switch
 
For this device, NC stands for normally closed and NO stands for normally open. When powered on, each COM pin is connected to its respective NC pin
 
The switch is enabled when EN is low. If IN is also low, COM is connected to NC. If IN is high, COM is connected to NO
 
The TS3A5018 is a break-before-make switch. This means that during switching, a connection is broken before a new connection is established. The NC and NO pins are never connected to each other


{| class="wikitable"
{| class="wikitable"
|+This pinout belongs to B029A
|-
! Pin !! Name !! Notes
! Pin !! Name !! Notes
|-
|-
| 1 || ||  
| 1 || {{cellcolors|#555555|#ffffff}} IN || To Toshiba '''T6UN*EFG pin 11''' ?
|-
| colspan="3" {{cellcolors|lightgrey}}
|-
|-
| 2 || ||  
| 2 || NC1 ||  
|-
|-
| 3 || {{cellcolors|#666666|#ffffff}} RESET_SWITCH || To '''SW1''', when reset switch is pressed this pin is grounded
| 3 || NO1 ||  
|-
|-
| 4 || ||  
| 4 || COM1 ||  
|-
|-
| 5 ||  ||  
| colspan="3" {{cellcolors|lightgrey}}
|-
|-
| 6 || {{cellcolors|#ff3333}} V_USB || (and '''TP1''' in VX4 boards)
| 5 || NC2 ||  
|-
|-
| 7 || {{cellcolors|#ff9933}} V_MOTORS ? ||  
| 6 || NO2 ||  
|-
|-
| 8 || {{cellcolors|#009900}} BATT_STATUS_1 ? || To Toshiba '''T6UN6EFG pin ?''' (and '''TP8''' in V2.5 board ?)
| 7 || COM2 ||  
|-
|-
| 9 || {{cellcolors|#009900}} BATT_STATUS_2 ? || To Toshiba '''T6UN6EFG pin ?''' (and '''TP9''' in V2.5 board ?)
| colspan="3" {{cellcolors|lightgrey}}
|-
|-
| 10 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
| 8 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
|-
|-
| colspan="3" {{cellcolors|lightgrey}}
| colspan="3" {{cellcolors|lightgrey}}
|-
|-
| 11 || || Same function as Texas Instruments SN89062 pin 13 ?
| 9 || COM3 || (and TP22 in MSU PP4.0 11 boards)
|-
|-
| 12 || || Same function as Texas Instruments SN89062 pin 14 ?
| 10 || NO3 ||  
|-
|-
| 13 || || Same function as Texas Instruments SN89062 pin 15 ?
| 11 || NC3 || RX pot pin 2 (and missing capacitor C41 to ground in MSU PP4.0 11 boards)
|-
|-
| 14 ||  || Same function as Texas Instruments SN89062 pin 16 ?
| colspan="3" {{cellcolors|lightgrey}}
|-
|-
| 15 || ||  
| 12 || COM4 ||  
|-
|-
| 16 || || Same function as Texas Instruments SN89062 pin 20 ?
| 13 || NO4 ||  
|-
|-
| 17 || || Same function as Texas Instruments SN89062 pin 21 ?
| 14 || NC4 || RY pot pin 2 (and missing capacitor C42 to ground in MSU PP4.0 11 boards)
|-
|-
| 18 ||  || Same function as Texas Instruments SN89062 pin 22 ?
| colspan="3" {{cellcolors|lightgrey}}
|-
|-
| 19 || || Same function as Texas Instruments SN89062 pin 23 ?
| 15 || {{cellcolors|#000000|#ffffff}} <abbr title="it seems to be grounded in the photos availables to keep it permanently enabled">EN</abbr> || To '''ground'''
|-
|-
| 20 || || Same function as Texas Instruments SN89062 pin 24 ?
| 16 || {{cellcolors|#ff9933}} <abbr title="if this pin is connected to one of the switched power rails it can be turned ON/OFF by this pin">V_STICKS ?</abbr> || and C32 capacitor to ground in MSU PP4.0 11 boards
|}
|}


==== Texas Instruments R2A20060 and SN89062 ====
<!--
<div style="float:right">[[File:Texas Instruments R2A20060.jpg|200px|thumb|left|Texas Instruments R2A20060]][[File:Texas Instruments SN89062.jpg|200px|thumb|right|Texas Instruments SN89062]]</div>
damn, i just noticed there is a mistake since begining the first time i copyed the pinout from the datasheet, switches 3 and 4 are inverted, and i used some of that ones comparing them with the photos to imagine the purpose of the other pins so high chances there are others wrong... the lines, pins of other components, and tespoints involved in this circuit dedicated to the sticks are the ones i been messing with, promise, is just at this point i think are connected in a different way
24 pins. Used in boards: VX4, VX6, VX7 (R2A20060 is used in VX4 0.09 boards only and seems to be an early version/prototype of SN89062, both has the same pinout)


{| class="wikitable"
{| class="wikitable"
Line 777: Line 736:
! Pin !! Name !! Notes
! Pin !! Name !! Notes
|-
|-
| 1 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
| 1 || {{cellcolors|#555555|#ffffff}} IN || To Toshiba '''T6UN*EFG pin 11''' ?
|-
|-
| 2 || {{cellcolors|#008800}} BATT_CHARGE_START ? || To Toshiba '''T6UN6EFG pin 43'''
| colspan="3" {{cellcolors|lightgrey}}
|-
|-
| 3 || {{cellcolors|#666666|#ffffff}} RESET_SWITCH || To <abbr title="when reset switch is pressed this pin is grounded">'''SW1'''</abbr>
| 2 || {{cellcolors|#79604e}} NC1 || To Toshiba '''T6UN*EFG pin 77''' ?. (and TP19 in MSU PP4.0 11 boards ?)
|-
|-
| 4 || {{cellcolors|#4477ff}} BT_POWER_ON ? || To Toshiba '''T6UN6EFG pin 13''' with a <abbr title="47K resistor to standby power rail">pull-up resistor</abbr>
| 3 || {{cellcolors|#b6a091}} NO1 || To Toshiba '''T6UN*EFG pin 37''' ?
|-
|-
| 5 || {{cellcolors|#008800}} BATT_USB_POWER_GOOD ? || To Toshiba '''T6UN6EFG pin 42'''
| 4 || {{cellcolors|#b89882}} COM1 || LX pot pin 2 ?
|-
|-
| 6 || {{cellcolors|#ff3333}} V_USB || '''USB power rail''' input ('''TP1''' in VX4 boards) with a capacitor to ground. To '''USB connector''' and to '''USB protection diode pin 4''' (see notes below)
| colspan="3" {{cellcolors|lightgrey}}
|-
|-
| 7 || {{cellcolors|#ff9933}} V_BT ? || '''BT power rail''' output ('''TP10''' in VX4 boards) with a capacitor to ground. To '''BT module''' (ALPS '''413A pin 3''' and <abbr title="through resistor and with pull-down resistor... see ALPS 413A pinout for more details">'''pin 2'''</abbr> in VX4 boards)
| 5 || {{cellcolors|#79604e}} NC2 || To Toshiba '''T6UN*EFG pin 78''' ?. (and TP20 in MSU PP4.0 11 boards ?)
|-
|-
| 8 || {{cellcolors|#ff9933}} V_MOTORS || '''Motors power rail''' output ('''TP42''' in VX4 boards). To 2x '''"KEX"''' (<abbr title="or voltage regulators ?">transistors</abbr> ?, 5 pins), and '''BM+1''' (Big Motor +), and '''SM+1''' (Small Motor +)
| 6 || {{cellcolors|#b6a091}} NO2 || To Toshiba '''T6UN*EFG pin 38''' ?
|-
|-
| 9 || {{cellcolors|lightgrey}} N/C ? || <abbr title="dissapears under the component and doesnt seems to continue">Not connected ?</abbr>
| 7 || {{cellcolors|#b89882}} COM2 || LY pot pin 2 ?
|-
|-
| 10 || {{cellcolors|#009900}} BATT_STATUS_1 ? || To Toshiba '''T6UN6EFG pin 44''' ('''TP8''' in VX4 boards)
| colspan="3" {{cellcolors|lightgrey}}
|-
|-
| 11 || {{cellcolors|lightgrey}} N/C ? || <abbr title="dissapears under the component and doesnt seems to continue">Not connected ?</abbr>
| 8 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
|-
| 12 || {{cellcolors|#009900}} BATT_STATUS_2 ? || To Toshiba '''T6UN6EFG pin 45''' ('''TP9''' in VX4 boards)
|-
|-
| colspan="3" {{cellcolors|lightgrey}}
| colspan="3" {{cellcolors|lightgrey}}
|-
|-
| 13 || {{cellcolors|#000099|#FF4500}} POWER_BT_UNK ? || To '''BT module''' (ALPS '''413A pin 37''' in VX4 boards) with a <abbr title="47K resistor to ground">pull-down resistor</abbr>
| 9 || {{cellcolors|#79604e}} NC3 || To Toshiba '''T6UN*EFG pin 79''' ?. (and TP21 in MSU PP4.0 11 boards ?)
|-
|-
| 14 || {{cellcolors|#000099|#FF4500}} POWER_BT_UNK ? || To '''BT module''' (ALPS '''413A pin 16''' in VX4 boards) with a <abbr title="47K resistor to standby power rail">pull-up resistor</abbr>
| 10 || {{cellcolors|#b6a091}} NO3 || To Toshiba '''T6UN*EFG pin 39''' ?
|-
|-
| 15 || {{cellcolors|#000099|#FF4500}} POWER_BT_UNK ? || To '''BT module''' (ALPS '''413A pin 38''' in VX4 boards) with a capacitor to ground
| 11 || {{cellcolors|#b89882}} COM3 || RX pot pin 2
|-
|-
| 16 || {{cellcolors|#ff3333}} V_BATT || '''Battery power rail''' <abbr title="input when the battery is the only power source in the board, and output to charge the battery when USB power is present">input/output !</abbr> ('''TP14''' in VX4 boards) with a capacitor to ground. To '''battery +''' and toshiba '''T6UN6EFG pin 4''' (see notes below)
| colspan="3" {{cellcolors|lightgrey}}
|-
|-
| 17 || {{cellcolors|#aa7744}} STICKS_POWER_ON ? || To Toshiba '''T6UN6EFG pin 36'''
| 12 || {{cellcolors|#79604e}} NC4 || To Toshiba '''T6UN*EFG pin 80''' ?. (and TP22 in MSU PP4.0 11 boards ?)
|-
|-
| 18 || {{cellcolors|#000000|#ff9933}} V_CAP_1 || <abbr title="0.970uf meassured onboard so maybe not accurate">'''Capacitor'''</abbr> to ground
| 13 || {{cellcolors|#b6a091}} NO4 || To Toshiba '''T6UN*EFG pin 40''' ?
|-
|-
| 19 || {{cellcolors|#000099|#FF4500}} POWER_BT_UNK ? || To '''BT module''' (ALPS '''413A pin 15''' in VX4 boards) with a <abbr title="47K resistor to ground">pull-down resistor</abbr>
| 14 || {{cellcolors|#b89882}} COM4 || RY pot pin 2
|-
| 20 || {{cellcolors|#000000|#ff9933}} V_CAP_2 || <abbr title="1.950uf meassured onboard so maybe not accurate">'''Capacitor'''</abbr> to ground
|-
| 21 || {{cellcolors|#007700}} BATT_CHARGE_SETPOINT || Resistor (labeled '''R1''') to pull-down resistor (labeled '''R2''') and to DP transistor (labeled '''Q1'''). Controlled by Toshiba '''T6UN6EFG pin 41'''
|-
| 22 || {{cellcolors|#ff9933}} V_STBY || '''Standby power rail''' output. ('''TP11''' in VX4 boards) with a capacitor to ground
|-
| 23 || {{cellcolors|#ff9933}} V_SENSORS || '''Sensors power rail''' output. ('''TP12''' in VX4 boards) with a capacitor to ground
|-
| 24 || {{cellcolors|#ff9933}} V_STICKS || '''Sticks power rail''' output. ('''TP13''' in VX4 boards) with a capacitor to ground
|}
*Notes
**This component seems to provide several voltages for the BT module that i could not identify, probably are for the different components inside the BT module
**The connections named in the table BT_POWER_ON and STICKS_POWER_ON with the toshiba T6UN6EFG could have two purposes, either to provide voltages for the subcircuits inside toshiba T6UN6EFG, or to allow the toshiba T6UN6EFG to send control signals to switch the low voltage power rails (marked in orange in te table). This is a big blind shoot though, based in how some groups of connections are grouped at the toshiba T6UN6EFG side (see the [[Template:Toshiba T6UN6EFG Pinout]])
**The toshiba T6UN6EFG (pin 4) is connected to the battery + pin so it should work even if the texas instruments SN89062 is disabled, is unknown how much of the internal circuits of the toshiba T6UN6EFG are enabled by pin 4, but there are some other subcircuits of the toshiba T6UN6EFG that are powered by the standby power rail generated by the instruments SN89062 (the V_STBY pin in the table). The importance of this details is at logic level in the way the circuit works and who is the "boss" of the board
**The battery power rail has 3 connections, to the battery + pin connector, to the Texas Instruments SN89062 pin 16 (there is a direct connection in between this two), and also connected to the T6UN6EFG pin 4 by using an intermediate 147K/190K diode ?, and another diode of the same value to ground. The point of this diodes is to protect the toshiba chip because the other side of the battery power rail can work in two modes, when the controller is working and the only power source is the battery then the battery power rail provides power to the toshiba T6UN6EFG and Texas Instruments SN89062, and when the USB cable is connected then the Texas Instruments SN89062 checks the battery charge and starts the recharge, this recharge is made by using variable voltages (if the battery is very empty the voltage is higher and at the end of the chargue it starts reducing the intensity), the toshiba T6UN6EFG cant work with this variable voltages (other than using this voltage values as a check to know how the charge process is being made in a very accurate way), so the diodes seems to work as a barrier to stop that variable voltage to reach the toshiba T6UN6EFG
**All the boards has a component (with 5 pins) that protects the USB lines from [https://en.wikipedia.org/wiki/Electrostatic_discharge ESD] [https://en.wikipedia.org/wiki/Electromagnetic_interference EMI] and other kind of dangerous voltage effects that could appear on the USB data lines, is connected to the USB power rail (pin 4), standby power rail (pin 3), USB data + (pin 1), USB data - (pin 5), and to ground (pin 2). In some of the board models (the ones that has that side of the board printed such V2.5) it can be seen is labeled D1 (diode 1, the first and most important diode of the board), the component is listed in [https://www.electronicproducts.com/Sony_Playstation_3-whatsinside_text-10.aspx this link] as one of the parts of the PP4 boards and is marked 500 (when looking at a photo of a PP4 board search for the component labeled D1, and marked 500, next to the USB connector), sadly i could not find a accurate datasheet of it (if someone finds something please post it), but is something close to [http://www.syncpower.com/datasheet/SPE6V8UN.pdf this] (dual) or [https://assets.nexperia.com/documents/data-sheet/BZA800AVL_SERIES.pdf this] (quad). The component is actually a diode array made either with standard or [https://en.wikipedia.org/wiki/Transient-voltage-suppression_diode TVS diodes]. It can be defined as something such... "multichannel ESD protection diode array" (the 2 channels are the USB data lines + and -, and the 2 voltages are the USB or battery power sources). In VX4 version of the board this diode is marked N13, in VX5 N1W, in PP1 prototype (and PP4) 500, in VX7 N1D ?
 
----
 
=== Sticks control ===
 
==== Texas Instruments YA018 ====
<div style="float:right">[[File:Texas Instruments YA018.jpg|200px|thumb|right|Texas Instruments YA018]]<br>[[File:Texas Instruments YA018 pinout.jpg|200px|thumb|right|Texas Instruments YA018 pinout]]<br>[[File:3-pins pots interconnections.jpg|200px|thumb|right|3-pins pots interconnections]]</div>
16 pins. Used in PP4 boards (the first retail sixaxis models)
*Texas Instruments TS3A5018 TSSOP package
*http://www.ti.com/product/TS3A5018
*http://www.ti.com/lit/ds/symlink/ts3a5018.pdf
 
The TS3A5018 is a quad single-pole-double-throw ([https://en.wikipedia.org/wiki/Switch#Contact_terminology SPDT]) bidirectional solid-state analog switch
 
For this device, NC stands for normally closed and NO stands for normally open. When powered on, each COM pin is connected to its respective NC pin
 
The switch is enabled when EN is low. If IN is also low, COM is connected to NC. If IN is high, COM is connected to NO
 
The TS3A5018 is a break-before-make switch. This means that during switching, a connection is broken before a new connection is established. The NC and NO pins are never connected to each other
 
{| class="wikitable"
|-
! Pin !! Name !! Notes
|-
| 1 || {{cellcolors|#555555|#ffffff}} IN || To Toshiba '''T6UN*EFG pin 11''' ?
|-
| 2 || {{cellcolors|#cc9966}} NC1 || LX pot pin 2 (and missing capacitor C40 to ground in MSU PP4.0 5 boards)
|-
| 3 || {{cellcolors|#aa7744}} NO1 ||
|-
| 4 || {{cellcolors|#885522}} COM1 || TP20 ?
|-
| 5 || {{cellcolors|#cc9966}} NC2 || LY pot pin 2 (and missing capacitor C39 to ground in MSU PP4.0 5 boards)
|-
| 6 || {{cellcolors|#aa7744}} NO2 ||
|-
| 7 || {{cellcolors|#885522}} COM2 || TP19 ?
|-
| 8 || {{cellcolors|#000000|#ffffff}} GND ||  To '''ground'''
|-
|-
| colspan="3" {{cellcolors|lightgrey}}
| colspan="3" {{cellcolors|lightgrey}}
|-
|-
| 9 || {{cellcolors|#885522}} COM3 || (and TP22 in MSU PP4.0 11 boards)
| 15 || {{cellcolors|#000000|#ffffff}} <abbr title="it seems to be grounded in the photos availables so the chip is permanently in ON state">EN</abbr> || To '''ground'''
|-
| 10 || {{cellcolors|#aa7744}} NO3 || somewhere... (and TP58 in PP4.0 5 boards ?)
|-
| 11 || {{cellcolors|#cc9966}} NC3 || RX pot pin 2 (and missing capacitor C41 to ground in MSU PP4.0 11 boards)
|-
| 12 || {{cellcolors|#885522}} COM4 || TP21 ?
|-
| 13 || {{cellcolors|#aa7744}} NO4 ||
|-
| 14 || {{cellcolors|#cc9966}} NC4 || RY pot pin 2 (and missing capacitor C42 to ground in MSU PP4.0 11 boards)
|-
| 15 || {{cellcolors|#000000|#ffffff}} <abbr title="it seems to be grounded in the photos availables to keep it permanently enabled">EN</abbr> || To '''ground'''
|-
|-
| 16 || {{cellcolors|#ff9933}} <abbr title="if this pin is connected to one of the switched power rails it can be turned ON/OFF by this pin">V_STICKS ?</abbr> || and C32 capacitor to ground in MSU PP4.0 11 boards
| 16 || {{cellcolors|#ff9933}} <abbr title="if this is connected to one of the switched power rails, the chip can be turned ON/OFF by this pin">V </abbr>||  
|}
|}
-->


==== Toshiba 763 and 5W54 ====
==== Toshiba 763 and 5W54 ====
Line 906: Line 796:
! Pin !! Name !! Notes
! Pin !! Name !! Notes
|-
|-
| 1 || {{cellcolors|#885522}} X_OUT || To toshiba T6UN*EFG pin ? (and TP30 in V2, V2.5, VX boards. TP22 in V3.5X board)
| 1 || {{cellcolors|#79604e}} X_OUT || To toshiba T6UN*EFG pin ? (and TP30 in V2, V2.5, VX boards. TP22 in V3.5X board)
|-
|-
| 2 || {{cellcolors|#cc9966}} POT_X_2 ? || Precission resistors and thermistor (RT3 for left stick, RT4 for right stick) to stick X axis pot pin 2 ?, and <abbr title="the traces cant be followed in the photos, in some models seems to do some kind of loop, and in others seems to go far away maybe to the toshiba T6UN*EFG">something weird</abbr>
| 2 || {{cellcolors|#b89882}} POT_X_2 ? || Precission resistors and thermistor (RT3 for left stick, RT4 for right stick) to stick X axis pot pin 2 ?, and <abbr title="the traces cant be followed in the photos, in some models seems to do some kind of loop, and in others seems to go far away maybe to the toshiba T6UN*EFG">something weird</abbr>
|-
|-
| 3 || {{cellcolors|#cc9966}} POT_X_1 ? || Precission resistor to stick X axis pot pin 1 ?
| 3 || {{cellcolors|#b89882}} POT_X_1 ? || Precission resistor to stick X axis pot pin 1 ?
|-
|-
| 4 || {{cellcolors|#000000|#ffffff}} GND ? ||  
| 4 || {{cellcolors|#000000|#ffffff}} GND ? ||  
|-
|-
| 5 || {{cellcolors|#cc9966}} POT_Y_1 ? || Precission resistor to stick Y axis pot pin 1 ?
| 5 || {{cellcolors|#b89882}} POT_Y_1 ? || Precission resistor to stick Y axis pot pin 1 ?
|-
|-
| 6 || {{cellcolors|#cc9966}} POT_Y_2 ? || Precission resistors and thermistor (RT2 for left stick, RT5 for right stick) to stick Y axis pot pin 2 ?, and <abbr title="the traces cant be followed in the photos, in some models seems to do some kind of loop, and in others seems to go far away maybe to the toshiba T6UN*EFG">something weird</abbr>
| 6 || {{cellcolors|#b89882}} POT_Y_2 ? || Precission resistors and thermistor (RT2 for left stick, RT5 for right stick) to stick Y axis pot pin 2 ?, and <abbr title="the traces cant be followed in the photos, in some models seems to do some kind of loop, and in others seems to go far away maybe to the toshiba T6UN*EFG">something weird</abbr>
|-
|-
| 7 || {{cellcolors|#885522}} Y_OUT || To toshiba T6UN6EFG pin ? (and TP29 in V2, V2.5, VX boards. TP21 in V3.5X board)
| 7 || {{cellcolors|#79604e}} Y_OUT || To toshiba T6UN6EFG pin ? (and TP29 in V2, V2.5, VX boards. TP21 in V3.5X board)
|-
|-
| 8 || {{cellcolors|#ff9933}} V_STICKS ? || the pin seems connected with a wide trace that goes to the closest pot pin 3 (and TP13 in V3.5X board... probably the V_STICKS rail)
| 8 || {{cellcolors|#ff9933}} V_STICKS ? || the pin seems connected with a wide trace that goes to the closest pot pin 3 (and TP13 in V3.5X board... probably the V_STICKS rail)
Line 953: Line 843:
| colspan="3" {{cellcolors|lightgrey}}
| colspan="3" {{cellcolors|lightgrey}}
|-
|-
| 4 || {{cellcolors|#cc9966}} POT_LY_2 || Stick '''Left Y''' axis pot '''pin 2'''
| 4 || {{cellcolors|#b89882}} LY_2 || Stick '''Left Y''' axis pot '''pin 2'''
|-
|-
| 5 || {{cellcolors|#cc9966}} POT_LX_1 || Stick '''Left X''' axis pot '''pin 1'''
| 5 || {{cellcolors|#b89882}} LX_1 || Stick '''Left X''' axis pot '''pin 1'''
|-
|-
| 6 || {{cellcolors|#cc9966}} POT_RY_2 || Stick '''Right Y''' axis pot '''pin 2'''
| 6 || {{cellcolors|#b89882}} RY_2 || Stick '''Right Y''' axis pot '''pin 2'''
|-
|-
| 7 || {{cellcolors|#cc9966}} POT_RX_1 || Stick '''Right X''' axis pot '''pin 1'''
| 7 || {{cellcolors|#b89882}} RX_1 || Stick '''Right X''' axis pot '''pin 1'''
|-
|-
| colspan="3" {{cellcolors|lightgrey}}
| colspan="3" {{cellcolors|lightgrey}}
|-
|-
| 8 || {{cellcolors|#cc9966}} POT_LY_1 || Stick '''Left Y''' axis pot '''pin 1'''
| 8 || {{cellcolors|#b89882}} LY_1 || Stick '''Left Y''' axis pot '''pin 1'''
|-
|-
| 9 || {{cellcolors|#cc9966}} POT_LX_2 || Stick '''Left X''' axis pot '''pin 2'''
| 9 || {{cellcolors|#b89882}} LX_2 || Stick '''Left X''' axis pot '''pin 2'''
|-
|-
| 10 || {{cellcolors|#cc9966}} POT_RY_1 || Stick '''Right Y''' axis pot '''pin 1'''
| 10 || {{cellcolors|#b89882}} RY_1 || Stick '''Right Y''' axis pot '''pin 1'''
|-
|-
| 11 || {{cellcolors|#cc9966}} POT_RX_2 || Stick '''Right X''' axis pot '''pin 2'''
| 11 || {{cellcolors|#b89882}} RX_2 || Stick '''Right X''' axis pot '''pin 2'''
|-
|-
| colspan="3" {{cellcolors|lightgrey}}
| colspan="3" {{cellcolors|lightgrey}}
|-
|-
| 12 || {{cellcolors|#ffeecc|#ee8822}} STICKS_LOOP_1_COMMON ? || rowspan="8" | All this pins are connected with each others making two independant subcircuits<br>Pin 12 is connected with <abbr title="left and right sticks pots - related ?">15 and 16</abbr> by using several resistors and a [https://en.wikipedia.org/wiki/Thermistor NTC thermistor]. This subcircuit seems to be an [https://en.wikipedia.org/wiki/Inrush_current_limiter Inrush current limiter]<br>Pin 13 is connected with <abbr title="left and right sticks pots + related ?">14 and 17</abbr> by using several resistors
| 12 || || rowspan="7" | All this pins are connected with each others making two independant subcircuits<br>Pin 12 is connected with <abbr title="left and right sticks pots - related ?">15 and 16</abbr> by using several resistors and a [https://en.wikipedia.org/wiki/Thermistor NTC thermistor]. This subcircuit seems to be an [https://en.wikipedia.org/wiki/Inrush_current_limiter Inrush current limiter]<br>Pin 13 is connected with <abbr title="left and right sticks pots + related ?">14 and 17</abbr> by using several resistors
|-
|-
| 13 || {{cellcolors|#ffeecc|#ee8822}} STICKS_LOOP_2_COMMON ?
| 13 ||  
|-
| 14 ||  
|-
|-
| colspan="2" {{cellcolors|lightgrey}}
| colspan="2" {{cellcolors|lightgrey}}
|-
|-
| 14 || {{cellcolors|#ffeecc|#ee8822}} STICKS_LOOP_2_LOW_R ?
| 15 ||  
|-
|-
| 15 || {{cellcolors|#ffeecc|#ee8822}} STICKS_LOOP_1_LOW_R ?
| 16 ||  
|-
|-
| colspan="2" {{cellcolors|lightgrey}}
| 17 ||  
|-
| 16 || {{cellcolors|#ffeecc|#ee8822}} STICKS_LOOP_1_HIGH_R ?
|-
| 17 || {{cellcolors|#ffeecc|#ee8822}} STICKS_LOOP_2_HIGH_R ?
|-
|-
| colspan="3" {{cellcolors|lightgrey}}
| colspan="3" {{cellcolors|lightgrey}}
|-
|-
| 18 || {{cellcolors|#aa7744}} RY_V ? || <abbr title="located close to Toshiba T6UN6EFG pin 41 corner">Capacitor network</abbr> to ground, and <abbr title="46.6K located next to Toshiba T6UN6EFG pin 40 corner">resistor network</abbr> to Toshiba '''T6UN6EFG pin 40'''
| 18 || {{cellcolors|#b6a091}} RY_V ? || <abbr title="located close to Toshiba T6UN6EFG pin 41 corner">Capacitor network</abbr> to ground, and <abbr title="46.6K located next to Toshiba T6UN6EFG pin 40 corner">resistor network</abbr> to Toshiba '''T6UN6EFG pin 40'''
|-
|-
| 19 || {{cellcolors|#aa7744}} RX_V ? || <abbr title="located close to Toshiba T6UN6EFG pin 41 corner">Capacitor network</abbr> to ground, and <abbr title="46.6K located next to Toshiba T6UN6EFG pin 40 corner">resistor network</abbr> to Toshiba '''T6UN6EFG pin 39'''
| 19 || {{cellcolors|#b6a091}} RX_V ? || <abbr title="located close to Toshiba T6UN6EFG pin 41 corner">Capacitor network</abbr> to ground, and <abbr title="46.6K located next to Toshiba T6UN6EFG pin 40 corner">resistor network</abbr> to Toshiba '''T6UN6EFG pin 39'''
|-
|-
| 20 || {{cellcolors|#aa7744}} LY_V ? || <abbr title="located close to Toshiba T6UN6EFG pin 41 corner">Capacitor network</abbr> to ground, and <abbr title="46.6K located next to Toshiba T6UN6EFG pin 40 corner">resistor network</abbr> to Toshiba '''T6UN6EFG pin 38'''
| 20 || {{cellcolors|#b6a091}} LY_V ? || <abbr title="located close to Toshiba T6UN6EFG pin 41 corner">Capacitor network</abbr> to ground, and <abbr title="46.6K located next to Toshiba T6UN6EFG pin 40 corner">resistor network</abbr> to Toshiba '''T6UN6EFG pin 38'''
|-
|-
| 21 || {{cellcolors|#aa7744}} LX_V ? || <abbr title="located close to Toshiba T6UN6EFG pin 41 corner">Capacitor network</abbr> to ground, and <abbr title="46.6K located next to Toshiba T6UN6EFG pin 40 corner">resistor network</abbr> to Toshiba '''T6UN6EFG pin 37'''
| 21 || {{cellcolors|#b6a091}} LX_V ? || <abbr title="located close to Toshiba T6UN6EFG pin 41 corner">Capacitor network</abbr> to ground, and <abbr title="46.6K located next to Toshiba T6UN6EFG pin 40 corner">resistor network</abbr> to Toshiba '''T6UN6EFG pin 37'''
|-
|-
| colspan="3" {{cellcolors|lightgrey}}
| colspan="3" {{cellcolors|lightgrey}}
|-
|-
| 22 || {{cellcolors|#885522}} RY ? || <abbr title="located close to Texas Instruments SN84001 pin 15 corner (traces are hidden under Toshiba T6UN6EFG)">Capacitor network</abbr> to ground, and to Toshiba '''T6UN6EFG pin 80'''. (and '''TP22''' in VX3 and VX4 boards)
| 22 || {{cellcolors|#79604e}} RY ? || <abbr title="located close to Texas Instruments SN84001 pin 15 corner (traces are hidden under Toshiba T6UN6EFG)">Capacitor network</abbr> to ground, and to Toshiba '''T6UN6EFG pin 80'''. (and '''TP22''' in VX3 and VX4 boards)
|-
|-
| 23 || {{cellcolors|#885522}} RX ? || <abbr title="located close to Texas Instruments SN84001 pin 15 corner (traces are hidden under Toshiba T6UN6EFG)">Capacitor network</abbr> to ground, and to Toshiba '''T6UN6EFG pin 79'''. (and '''TP21''' in VX3 and VX4 boards)
| 23 || {{cellcolors|#79604e}} RX ? || <abbr title="located close to Texas Instruments SN84001 pin 15 corner (traces are hidden under Toshiba T6UN6EFG)">Capacitor network</abbr> to ground, and to Toshiba '''T6UN6EFG pin 79'''. (and '''TP21''' in VX3 and VX4 boards)
|-
|-
| 24 || {{cellcolors|#885522}} LY ? || <abbr title="located close to Texas Instruments SN84001 pin 15 corner">Capacitor network</abbr> to ground, and to Toshiba '''T6UN6EFG pin 78'''. (and '''TP20''' in VX3 and VX4 boards)
| 24 || {{cellcolors|#79604e}} LY ? || <abbr title="located close to Texas Instruments SN84001 pin 15 corner">Capacitor network</abbr> to ground, and to Toshiba '''T6UN6EFG pin 78'''. (and '''TP20''' in VX3 and VX4 boards)
|-
|-
| 25 || {{cellcolors|#885522}} LX ? || <abbr title="located close to Texas Instruments SN84001 pin 15 corner">Capacitor network</abbr> to ground, and to Toshiba '''T6UN6EFG pin 77'''. (and '''TP19''' in VX3 and VX4 boards)
| 25 || {{cellcolors|#79604e}} LX ? || <abbr title="located close to Texas Instruments SN84001 pin 15 corner">Capacitor network</abbr> to ground, and to Toshiba '''T6UN6EFG pin 77'''. (and '''TP19''' in VX3 and VX4 boards)
|-
|-
| colspan="3" {{cellcolors|lightgrey}}
| colspan="3" {{cellcolors|lightgrey}}
Line 1,030: Line 918:


So the [https://en.wikipedia.org/wiki/Thermistor NTC thermistor] is working as a [https://en.wikipedia.org/wiki/Inrush_current_limiter Inrush current limiter] for pins 15 and 16. And this pins seems to be related with the negative pole of the potentiometers
So the [https://en.wikipedia.org/wiki/Thermistor NTC thermistor] is working as a [https://en.wikipedia.org/wiki/Inrush_current_limiter Inrush current limiter] for pins 15 and 16. And this pins seems to be related with the negative pole of the potentiometers
By comparing this chip with the previous Toshiba TC75W54 there are two important differences, most notable is the Toshiba TC75W54 doesnt have the pins dedicated to the sticks subcircuits loops (where the thermistor/s is/are located) but it seems are around it, the Toshiba TC75W54 has 4 thermistors dedicated to this loops and Texas Instruments SN84001 has only one (this is an improvement to reduce costs and to make the circuit more simple and efficient). The point is that loops seems to be similar, maybe not exactly the same but something close to it. The other big difference is the Toshiba TC75W54 doesnt have connections with Toshiba T6UN6EFG pins 37, 38, 39, 40 (but are used connected somewhere else)... most probably is this pins are related with the stick subcircuits loops too


==== Texas Instruments A6044A0 ====
==== Texas Instruments A6044A0 ====
Line 1,037: Line 923:
48 pins. Used in VX5 boards
48 pins. Used in VX5 boards


This is an three-in-one component, integrates power/sticks control, and the functions of the battery setpoint transistor used in other boards. Is the result of placing together all the circuits of Texas Instruments SN89062, SN84001, and the DP transistor
This is an all-in-one component, it does the power and sticks controll


{| class="wikitable"
{| class="wikitable"
Line 1,043: Line 929:
! Pin !! Name !! Notes
! Pin !! Name !! Notes
|-
|-
| 1 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
| 1 || {{cellcolors|#000000|#ffffff}} GND ||  
|-
|-
| 2 || {{cellcolors|#008800}} BATT_CHARGE_START ? || To Toshiba '''T6UN6EFG pin 43'''
| 2 ||  
|-
|-
| 3 || {{cellcolors|#666666|#ffffff}} RESET_SWITCH || To <abbr title="when reset switch is pressed this pin is grounded">'''SW1'''</abbr>
| 3 || {{cellcolors|#666666|#ffffff}} RESET_SWITCH || To '''SW1''', when reset switch is pressed this pin is grounded
|-
|-
| 4 || {{cellcolors|#4477ff}} BT_POWER_CTRL ? || To Toshiba '''T6UN6EFG pin 13''' with a <abbr title="4x resistor network 47K to standby power rail, located next to the BT SPI testpoints in VX5">pull-up resistor</abbr> and capacitor to ground
| 4 ||  
|-
|-
| 5 || {{cellcolors|#008800}} BATT_USB_POWER_GOOD ? || To Toshiba '''T6UN6EFG pin 42'''
| 5 ||  
|-
|-
| 6 || {{cellcolors|#ff3333}} V_USB || '''USB power rail''' input ('''TP1''')...
| 6 || {{cellcolors|#ff3333}} V_USB ||  
|-
|-
| 7 || {{cellcolors|#ff9933}} V_BT ? || '''BT power rail''' output ('''TP11''') with a capacitor to ground. To '''BT module''' ALPS '''603A pin ?''' and <abbr title="through resistor and with pull-down resistor... see ALPS 603A pinout for more details">'''pin ?'''</abbr>
| 7 ||  
|-
|-
| 8 || {{cellcolors|#ff9933}} V_MOTORS || '''Motors power rail''' output ('''TP8'''). To 2x '''"KEX"''' (<abbr title="or voltage regulators ?">transistors</abbr> ?, 5 pins) with capacitors to ground, and '''BM+1''' (Big Motor +), and '''SM+1''' (Small Motor +)
| 8 ||  
|-
|-
| 9 || {{cellcolors|lightgrey}} N/C ? || <abbr title="dissapears under the component">Not connected ?</abbr>
| 9 ||  
|-
|-
| 10 || {{cellcolors|#009900}} BATT_CHARGE_STATUS_1 ? || To Toshiba '''T6UN6EFG, pin 44''' (and '''TP15''')
| 10 || BATT_CHARGE_STATUS_1 ? || To Toshiba '''T6UN6EFG, pin 44''' (and '''TP15''')
|-
|-
| 11 || {{cellcolors|#009900}} BATT_CHARGE_STATUS_2 ? || To Toshiba '''T6UN6EFG, pin 45''' (and '''TP9''')
| 11 || BATT_CHARGE_STATUS_2 ? || To Toshiba '''T6UN6EFG, pin 45''' (and '''TP9''')
|-
|-
| 12 || {{cellcolors|#885522}}  || <abbr title="located close to Texas Instruments A6044A0 pin 1 corner">4x capacitor network</abbr> to ground, and to Toshiba '''T6UN6EFG pin 77'''. (and '''TP19''')
| 12 || {{cellcolors|#79604e}}  || <abbr title="located close to Texas Instruments A6044A0 pin 1 corner">4x capacitor network</abbr> to ground, and to Toshiba '''T6UN6EFG pin 77'''. (and '''TP19''')
|-
|-
| 13 || {{cellcolors|#885522}}  || <abbr title="located close to Texas Instruments A6044A0 pin 1 corner">4x capacitor network</abbr> to ground, and to Toshiba '''T6UN6EFG pin ?'''. (and '''TP?''')
| 13 || {{cellcolors|#79604e}}  || <abbr title="located close to Texas Instruments A6044A0 pin 1 corner">4x capacitor network</abbr> to ground, and to Toshiba '''T6UN6EFG pin ?'''. (and '''TP?''')
|-
|-
| 14 || {{cellcolors|#885522}}  || <abbr title="located close to Texas Instruments A6044A0 pin 1 corner">4x capacitor network</abbr> to ground, and to Toshiba '''T6UN6EFG pin ?'''. (and '''TP?''')
| 14 || {{cellcolors|#79604e}}  || <abbr title="located close to Texas Instruments A6044A0 pin 1 corner">4x capacitor network</abbr> to ground, and to Toshiba '''T6UN6EFG pin ?'''. (and '''TP?''')
|-
|-
| 15 || {{cellcolors|#885522}}  || <abbr title="located close to Texas Instruments A6044A0 pin 1 corner">4x capacitor network</abbr> to ground, and to Toshiba '''T6UN6EFG pin 80'''. (and '''TP22''')
| 15 || {{cellcolors|#79604e}}  || <abbr title="located close to Texas Instruments A6044A0 pin 1 corner">4x capacitor network</abbr> to ground, and to Toshiba '''T6UN6EFG pin 80'''. (and '''TP22''')
|-
|-
| 16 || {{cellcolors|#cc9966}} POT_LY_2 || Stick '''Left Y''' axis pot '''pin 2'''
| 16 || {{cellcolors|#b89882}} LY_2 || Stick '''Left Y''' axis pot '''pin 2'''
|-
|-
| 17 || {{cellcolors|#cc9966}} POT_LX_1 || Stick '''Left X''' axis pot '''pin 1'''
| 17 || {{cellcolors|#b89882}} LX_1 || Stick '''Left X''' axis pot '''pin 1'''
|-
|-
| 18 || {{cellcolors|#cc9966}} POT_RY_2 || Stick '''Right Y''' axis pot '''pin 2'''
| 18 || {{cellcolors|#b89882}} RY_2 || Stick '''Right Y''' axis pot '''pin 2'''
|-
|-
| 19 || {{cellcolors|#cc9966}} POT_RX_1 || Stick '''Right X''' axis pot '''pin 1'''
| 19 || {{cellcolors|#b89882}} RX_1 || Stick '''Right X''' axis pot '''pin 1'''
|-
|-
| 20 || {{cellcolors|#cc9966}} POT_LY_1 || Stick '''Left Y''' axis pot '''pin 1'''
| 20 || {{cellcolors|#b89882}} LY_1 || Stick '''Left Y''' axis pot '''pin 1'''
|-
|-
| 21 || {{cellcolors|#cc9966}} POT_LX_2 || Stick '''Left X''' axis pot '''pin 2'''
| 21 || {{cellcolors|#b89882}} LX_2 || Stick '''Left X''' axis pot '''pin 2'''
|-
|-
| 22 || {{cellcolors|#cc9966}} POT_RY_1 || Stick '''Right Y''' axis pot '''pin 1'''
| 22 || {{cellcolors|#b89882}} RY_1 || Stick '''Right Y''' axis pot '''pin 1'''
|-
|-
| 23 || {{cellcolors|#cc9966}} POT_RX_2 || Stick '''Right X''' axis pot '''pin 2'''
| 23 || {{cellcolors|#b89882}} RX_2 || Stick '''Right X''' axis pot '''pin 2'''
|-
|-
| 24 || <abbr title="something similar than Texas Instruments SN84001 pins 12, 13, 14, 15, 16, 17">Sticks subcircuits loops</abbr> || 47K resistor to... ? (two different places)
| 24 ||  
|-
|-
| colspan="3" {{cellcolors|lightgrey}}
| colspan="3" {{cellcolors|lightgrey}}
|-
|-
| 25 || <abbr title="something similar than Texas Instruments SN84001 pins 12, 13, 14, 15, 16, 17">Sticks subcircuits loops</abbr> ||  
| 25 ||  
|-
|-
| 26 || <abbr title="something similar than Texas Instruments SN84001 pins 12, 13, 14, 15, 16, 17">Sticks subcircuits loops</abbr> || 35.7K resistor to... ?
| 26 ||  
|-
|-
| 27 || <abbr title="something similar than Texas Instruments SN84001 pins 12, 13, 14, 15, 16, 17">Sticks subcircuits loops</abbr> ||  
| 27 ||  
|-
|-
| 28 || <abbr title="something similar than Texas Instruments SN84001 pins 12, 13, 14, 15, 16, 17">Sticks subcircuits loops</abbr> || To <abbr title=".550M located next to the pin">4x Resistor network</abbr>, and... ?
| 28 ||  
|-
|-
| 29 || <abbr title="something similar than Texas Instruments SN84001 pins 12, 13, 14, 15, 16, 17">Sticks subcircuits loops</abbr> || To <abbr title=".550M located next to the pin">4x Resistor network</abbr>, and... ?
| 29 ||  
|-
|-
| 30 || {{cellcolors|#aa7744}}  || <abbr title="located close to Toshiba T6UN6EFG pin 40 corner">4x capacitor network</abbr> (CN4) to ground, and <abbr title="47.6K located close to Toshiba T6UN6EFG pin 40 corner">4x resistor network</abbr> (RN7) to Toshiba '''T6UN6EFG pin 40'''
| 30 || {{cellcolors|#b6a091}}  || <abbr title="located close to Toshiba T6UN6EFG pin 40 corner">4x capacitor network</abbr> (CN4) to ground, and <abbr title="47.6K located close to Toshiba T6UN6EFG pin 40 corner">4x resistor network</abbr> (RN7) to Toshiba '''T6UN6EFG pin 40'''
|-
|-
| 31 || {{cellcolors|#aa7744}}  || <abbr title="located close to Toshiba T6UN6EFG pin 40 corner">4x capacitor network</abbr> (CN4) to ground, and <abbr title="47.6K located close to Toshiba T6UN6EFG pin 40 corner">4x resistor network</abbr> (RN7) to Toshiba '''T6UN6EFG pin ?'''
| 31 || {{cellcolors|#b6a091}}  || <abbr title="located close to Toshiba T6UN6EFG pin 40 corner">4x capacitor network</abbr> (CN4) to ground, and <abbr title="47.6K located close to Toshiba T6UN6EFG pin 40 corner">4x resistor network</abbr> (RN7) to Toshiba '''T6UN6EFG pin ?'''
|-
|-
| 32 || {{cellcolors|#aa7744}}  || <abbr title="located close to Toshiba T6UN6EFG pin 40 corner">4x capacitor network</abbr> (CN4) to ground, and <abbr title="47.6K located close to Toshiba T6UN6EFG pin 40 corner">4x resistor network</abbr> (RN7) to Toshiba '''T6UN6EFG pin ?'''
| 32 || {{cellcolors|#b6a091}}  || <abbr title="located close to Toshiba T6UN6EFG pin 40 corner">4x capacitor network</abbr> (CN4) to ground, and <abbr title="47.6K located close to Toshiba T6UN6EFG pin 40 corner">4x resistor network</abbr> (RN7) to Toshiba '''T6UN6EFG pin ?'''
|-
|-
| 33 || {{cellcolors|#aa7744}}  || <abbr title="located close to Toshiba T6UN6EFG pin 40 corner">4x capacitor network</abbr> (CN4) to ground, and <abbr title="47.6K located close to Toshiba T6UN6EFG pin 40 corner">4x resistor network</abbr> (RN7) to Toshiba '''T6UN6EFG pin 37'''
| 33 || {{cellcolors|#b6a091}}  || <abbr title="located close to Toshiba T6UN6EFG pin 40 corner">4x capacitor network</abbr> (CN4) to ground, and <abbr title="47.6K located close to Toshiba T6UN6EFG pin 40 corner">4x resistor network</abbr> (RN7) to Toshiba '''T6UN6EFG pin 37'''
|-
|-
| 34 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
| 34 || {{cellcolors|#000000|#ffffff}} GND ||  
|-
|-
| 35 || {{cellcolors|#555555|#ffffff}} SLAVES_RESET || Connected to Toshiba '''T6UN6EFG pin 11''', and... ?
| 35 ||  
|-
|-
| 36 || {{cellcolors|#000099|#FF4500}} POWER_BT_UNK ? ||  
| 36 ||  
|-
|-
| 37 || {{cellcolors|#000099|#FF4500}} POWER_BT_UNK ? ||  
| 37 ||  
|-
|-
| 38 || {{cellcolors|#000099|#FF4500}} POWER_BT_UNK ? ||  
| 38 ||  
|-
|-
| 39 || {{cellcolors|#ff3333}} V_BATT ||  
| 39 || {{cellcolors|#ff3333}} V_BATT ||  
|-
|-
| 40 || {{cellcolors|#aa7744}} STICKS_POWER_ON ? || To Toshiba '''T6UN6EFG pin 36'''
| 40 ||  
|-
|-
| 41 || {{cellcolors|#000099|#FF4500}} POWER_BT_UNK ? || ALPS 603A pin 4, and 4x resistor network 47K to ground (next to the BT module SPI testpoints)
| 41 ||  
|-
|-
| 42 || {{cellcolors|#007700}} BATT_CHARGE_SETPOINT_DP_BASE || To Toshiba '''T6UN6EFG pin 41'''
| 42 ||  
|-
|-
| 43 || {{cellcolors|#007700}} BATT_CHARGE_SETPOINT_DP_COLLECTOR || 2.6K resistor to pin 45
| 43 ||  
|-
|-
| 44 || {{cellcolors|#000000|#ff9933}} V_CAP_2 || (Big) <abbr title="1.840uf meassured onboard so maybe not accurate">'''Capacitor'''</abbr> to ground (C4)
| 44 ||  
|-
|-
| 45 || {{cellcolors|#007700}} BATT_CHARGE_SETPOINT || <abbr title="zener diode ?... 0.444 with the anode connected to ground">Reverse current protection diode</abbr>, and 2.6K resistor to pin 43
| 45 ||  
|-
|-
| 46 || {{cellcolors|#ff9933}} V_STBY  ||  
| 46 || {{cellcolors|#ff9933}} V_STBY  ||  
Line 1,143: Line 1,029:


In VX5 board there are 2 capacitor networks composed by 4 capacitors packed together, all them are connected in between this component and the toshiba T6UN6EFG, a total of 8 lines related with the sticks
In VX5 board there are 2 capacitor networks composed by 4 capacitors packed together, all them are connected in between this component and the toshiba T6UN6EFG, a total of 8 lines related with the sticks
This is the only version of the boards where there is not a transistor (usually marked as <abbr title="Acronym of a Digital Potentiometer ?">'''DP'''</abbr>) to set the resistance that controlls the battery charge speeds, taper, and other battery charge configurations, the reason why this component doesnt exists in VX5 is because is integrated inside Texas Instruments A6044A0. The way it works is 1) toshiba pin 41 sends the signal (that was connected to the base of a transistor in all the other board versions) to Texas Instruments A6044A0 pin 42. Then 2) the signal drives an internal transistor (or digital potentiometer ?) inside the Texas Instruments A6044A0 that has the emitter pin connected to ground, so pin 43 is totally (or partially with a variable resistance ?) connected to ground. Then 3) Texas Instruments A6044A0 pin 45 calculates the battery setpoint by meassuring the resistance in between pin 43 (ground) and 45. Pin 45 works exactly the same way than in other boards models, actually the values of the resistor and diode in between pin 43 and 45 are the same used in some other boards such VX4


=== Stick types ===
=== Stick types ===
Line 1,219: Line 1,103:
| 7 ||  ||  
| 7 ||  ||  
|-
|-
| 8 || {{cellcolors|#ff77bb}} SENSOR_ACCL_ ? || To Toshiba '''T6UN*EFG, pin ?'''
| 8 || {{cellcolors|#ffff66}} ACCL_AXIS ? || To Toshiba '''T6UN*EFG, pin ?'''
|-
|-
| 9 || {{cellcolors|#ff77bb}} SENSOR_ACCL_ ? || To Toshiba '''T6UN*EFG, pin ?'''
| 9 || {{cellcolors|#ffff66}} ACCL_AXIS ? || To Toshiba '''T6UN*EFG, pin ?'''
|-
|-
| 10 || {{cellcolors|#ff77bb}} SENSOR_ACCL_ ? || To Toshiba '''T6UN*EFG, pin ?'''
| 10 || {{cellcolors|#ffff66}} ACCL_AXIS ? || To Toshiba '''T6UN*EFG, pin ?'''
|}
|}


===== Analog Devices 330K =====
===== Analog Devices 330K =====
<div style="float:right">[[File:Analog Devices 330K.jpg|200px|thumb|right|Analog Devices 330K]]</div>
<div style="float:right">[[File:Analog Devices 330K.jpg|200px|thumb|right|Analog Devices 330K]][[Image:Analog Devices 330K pinout.jpg|500px|thumb|left|Analog Devices 330K pinout]]</div>
16 pins. Used in board MSU_PP4.0 9 only
Analog Devices ADXL330KCPZ, 3-Axis Accelerometer, ±3g, 1.8 → 3.6 V, LFCSP 16-Pin
*Analog Devices ADXL330KCPZ, 3-Axis Accelerometer, ±3g, 1.8 → 3.6 V, LFCSP 16-Pin
 
*http://www.analog.com/en/products/mems/accelerometers.html
*http://www.analog.com/en/products/mems/accelerometers.html
*http://uk.rs-online.com/web/c/semiconductors/sensor-ics/accelerometer-ics/?applied-dimensions=4294967128
*http://uk.rs-online.com/web/c/semiconductors/sensor-ics/accelerometer-ics/?applied-dimensions=4294967128
*http://uk.rs-online.com/web/p/accelerometer-ics/0412775/
*http://uk.rs-online.com/web/p/accelerometer-ics/0412775/
*http://docs-europe.electrocomponents.com/webdocs/0aa7/0900766b80aa75b6.pdf


Only used in MSU_PP4.0 9 model
{| class="wikitable"
{| class="wikitable"
|-
|-
! Pin !! Name !! Notes
! Pin !! Name !! Notes
|-
|-
| 1 || {{cellcolors|lightgrey}} N/C || Not connected
| 1 || ||  
|-
|-
| 2 || <abbr title="When this pin is set to Vs, an electrostatic force is exerted on the accelerometer beam. The resulting movement of the beam allows the user to test if the accelerometer is functional. This ST pin may be left open circuit or connected to common (COM) in normal use">Self Test</abbr> || It cant be seen in the photos but most probably this function is disabled
| 2 || ||  
|-
|-
| 3 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
| 3 || ||  
|-
|-
| 4 || {{cellcolors|lightgrey}} N/C || Not connected
| 4 || ||  
|-
|-
| 5 || {{cellcolors|#000000|#ffffff}} GND || rowspan="3" | To '''ground'''
| 5 || ||  
|-
|-
| 6 || {{cellcolors|#000000|#ffffff}} GND
| 6 || ||  
|-
|-
| 7 || {{cellcolors|#000000|#ffffff}} GND
| 7 || ||  
|-
|-
| 8 || {{cellcolors|#ff77bb}} SENSOR_ACCL_Z || To a testpoint, then resistor and capacitor to ground, then to another testpoint, then to Toshiba '''T6UN6EFG, pin ?'''
| 8 || ||  
|-
|-
| 9 || {{cellcolors|lightgrey}} N/C || Not connected
| 9 || ||  
|-
|-
| 10 || {{cellcolors|#ff77bb}} SENSOR_ACCL_Y || To a testpoint, then resistor and capacitor to ground, then to another testpoint, then to Toshiba '''T6UN6EFG, pin ?'''
| 10 || ||  
|-
|-
| 11 || {{cellcolors|lightgrey}} N/C || Not connected
| 11 || ||  
|-
|-
| 12 || {{cellcolors|#ff77bb}} SENSOR_ACCL_X || To a testpoint, then resistor and capacitor to ground, then to another testpoint, then to Toshiba '''T6UN6EFG, pin ?'''
| 12 || ||  
|-
|-
| 13 || {{cellcolors|lightgrey}} N/C || Not connected
| 13 || ||  
|-
|-
| 14 || {{cellcolors|#ff9933}} V_SENSORS || rowspan="2" | To '''sensors power''' rail
| 14 || ||  
|-
|-
| 15 || {{cellcolors|#ff9933}} V_SENSORS
| 15 || ||  
|-
|-
| 16 || {{cellcolors|lightgrey}} N/C || Not connected
| 16 || ||  
|}
|}


Line 1,299: Line 1,183:
| 7 || {{cellcolors|#ff9933}} V_SENSORS || '''2.8V Switched'''. Power for accelerometer and gyroscope. and capacitor to ground. (and connected to '''TP12''' in VX4 boards)
| 7 || {{cellcolors|#ff9933}} V_SENSORS || '''2.8V Switched'''. Power for accelerometer and gyroscope. and capacitor to ground. (and connected to '''TP12''' in VX4 boards)
|-
|-
| 8 || {{cellcolors|#ff77bb}} SENSOR_ACCL_X || To a testpoint ('''TP33''' in VX4 boards), then 33K resistor and capacitor to ground, then to another testpoint ('''TP36''' in VX4 boards), then to Toshiba '''T6UN6EFG, pin 6'''
| 8 || {{cellcolors|#ffff66}} ACCL_X || To a testpoint ('''TP33''' in VX4 boards), then 33K resistor and capacitor to ground, then to another testpoint ('''TP36''' in VX4 boards), then to Toshiba '''T6UN6EFG, pin 6'''
|-
|-
| 9 || {{cellcolors|#ff77bb}} SENSOR_ACCL_Y || To a testpoint ('''TP32''' in VX4 boards), then 33K resistor and capacitor to ground, then to another testpoint ('''TP35''' in VX4 boards), then to Toshiba '''T6UN6EFG, pin 7'''
| 9 || {{cellcolors|#ffff66}} ACCL_Y || To a testpoint ('''TP32''' in VX4 boards), then 33K resistor and capacitor to ground, then to another testpoint ('''TP35''' in VX4 boards), then to Toshiba '''T6UN6EFG, pin 7'''
|-
|-
| 10 || {{cellcolors|#ff77bb}} SENSOR_ACCL_Z || To a testpoint ('''TP34''' in VX4 boards), then 33K resistor and capacitor to ground, then to another testpoint ('''TP37''' in VX4 boards), then to Toshiba '''T6UN6EFG, pin 8'''
| 10 || {{cellcolors|#ffff66}} ACCL_Z || To a testpoint ('''TP34''' in VX4 boards), then 33K resistor and capacitor to ground, then to another testpoint ('''TP37''' in VX4 boards), then to Toshiba '''T6UN6EFG, pin 8'''
|-
|-
| 11 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
| 11 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
Line 1,324: Line 1,208:
| 1 || {{cellcolors|lightgrey}} N/C ? ||  
| 1 || {{cellcolors|lightgrey}} N/C ? ||  
|-
|-
| 2 || {{cellcolors|#ff77bb}} SENSOR_ACCL_ ? || To Toshiba '''T6UN6EFG, pin ?'''
| 2 || {{cellcolors|#ffff66}} ACCL_AXIS ? || To Toshiba '''T6UN6EFG, pin ?'''
|-
|-
| 3 || {{cellcolors|#ff77bb}} SENSOR_ACCL_ ? || To Toshiba '''T6UN6EFG, pin ?'''
| 3 || {{cellcolors|#ffff66}} ACCL_AXIS ? || To Toshiba '''T6UN6EFG, pin ?'''
|-
|-
| 4 || {{cellcolors|#ff77bb}} SENSOR_ACCL_ ? || To Toshiba '''T6UN6EFG, pin ?'''
| 4 || {{cellcolors|#ffff66}} ACCL_AXIS ? || To Toshiba '''T6UN6EFG, pin ?'''
|-
|-
| 5 || {{cellcolors|#000000|#ffffff}} GND ? ||  
| 5 || {{cellcolors|#000000|#ffffff}} GND ? ||  
Line 1,377: Line 1,261:
| 6 || {{cellcolors|#000000|#ffffff}} GND
| 6 || {{cellcolors|#000000|#ffffff}} GND
|-
|-
| 7 || {{cellcolors|#ff77bb}} SENSOR_ACCL_Y || To a testpoint ('''TP32''' in VX4 boards), then 33K resistor and capacitor to ground, then to another testpoint ('''TP35''' in VX4 boards), then to Toshiba '''T6UN6EFG, pin 7'''
| 7 || {{cellcolors|#ffff66}} ACCL_Y || To a testpoint ('''TP32''' in VX4 boards), then 33K resistor and capacitor to ground, then to another testpoint ('''TP35''' in VX4 boards), then to Toshiba '''T6UN6EFG, pin 7'''
|-
|-
| 8 || {{cellcolors|#ff77bb}} SENSOR_ACCL_X || To a testpoint ('''TP33''' in VX4 boards), then 33K resistor and capacitor to ground, then to another testpoint ('''TP36''' in VX4 boards), then to Toshiba '''T6UN6EFG, pin 6'''
| 8 || {{cellcolors|#ffff66}} ACCL_X || To a testpoint ('''TP33''' in VX4 boards), then 33K resistor and capacitor to ground, then to another testpoint ('''TP36''' in VX4 boards), then to Toshiba '''T6UN6EFG, pin 6'''
|-
|-
| 9 || {{cellcolors|#ff77bb}} SENSOR_ACCL_Z || To a testpoint ('''TP34''' in VX4 boards), then 33K resistor and capacitor to ground, then to another testpoint ('''TP37''' in VX4 boards), then to Toshiba '''T6UN6EFG, pin 8'''
| 9 || {{cellcolors|#ffff66}} ACCL_Z || To a testpoint ('''TP34''' in VX4 boards), then 33K resistor and capacitor to ground, then to another testpoint ('''TP37''' in VX4 boards), then to Toshiba '''T6UN6EFG, pin 8'''
|-
|-
| 10 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
| 10 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
Line 1,405: Line 1,289:
| 1 || {{cellcolors|#ff9933}} V_SENSORS ||  
| 1 || {{cellcolors|#ff9933}} V_SENSORS ||  
|-
|-
| 2 || ? ||  
| 2 || ||  
|-
|-
| 3 || {{cellcolors|#ff77bb}} SENSOR_GYRO ? ||  
| 3 || ||  
|-
|-
| 4 || {{cellcolors|#000000|#ffffff}} GND ||  
| 4 || {{cellcolors|#000000|#ffffff}} GND ||  
Line 1,453: Line 1,337:
| 2 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
| 2 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
|-
|-
| 3 || ? || To 3 small SMD components one of each color... to '''ground'''
| 3 || || To 3 small SMD components one of each color... to '''ground'''
|-
|-
| 4 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
| 4 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
|-
|-
| 5 || {{cellcolors|lightgrey}} N/C ? || Not connected ?
| 5 || || Not connected ?
|-
|-
| 6 || {{cellcolors|#ff77bb}} SENSOR_GYRO || To a testpoint ('''TP41''' in VX4 boards), then 33K resistor and capacitor to ground, then to another testpoint ('''TP40''' in VX4 boards), then to Toshiba '''T6UN6EFG, pin 9'''
| 6 || {{cellcolors|#ffff66}} GYRO || To a testpoint ('''TP41''' in VX4 boards), then 33K resistor and capacitor to ground, then to another testpoint ('''TP40''' in VX4 boards), then to Toshiba '''T6UN6EFG, pin 9'''
|-
|-
| 7 || {{cellcolors|lightgrey}} N/C ? || Not connected ?
| 7 || || Not connected ?
|-
|-
| 8 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
| 8 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
Line 1,467: Line 1,351:
| 9 || {{cellcolors|#ff9933}} V_SENSORS || '''2.8V Switched'''. Power for accelerometer and gyroscope. and capacitor to ground. (and connected to '''TP12''' in VX4 boards)
| 9 || {{cellcolors|#ff9933}} V_SENSORS || '''2.8V Switched'''. Power for accelerometer and gyroscope. and capacitor to ground. (and connected to '''TP12''' in VX4 boards)
|-
|-
| 10 || {{cellcolors|lightgrey}} N/C ? || Not connected ?
| 10 || || Not connected ?
|}
|}


----
----
=== Bluetooth ===
=== Bluetooth ===
http://www.alps.com/products/e/category_tuner.html
http://www.alps.com/products/e/category_tuner.html


==== 48 pins (13x19mm) ====
==== ALPS 103A ====
===== ALPS 103A =====
<div style="float:right">[[File:ALPS 103A.jpg|200px|thumb|right|ALPS 103A]]</div>
<div style="float:right">[[File:ALPS 103A.jpg|200px|thumb|right|ALPS 103A]]</div>
Used in boards: PP4
*Components inside ALPS 103A BT module:
**PCB = 6 layers
**Logic = SCEI/CSR CXD3262GG (BlueCore4 - External - Single Chip Bluetooth Solution, V2.0+EDR)
***CSR = Cambridge Silicon Radio (later adquired by qualcomm)
***External = It means this member of the "BlueCore4 family" uses an external memory (the 8Mb NOR chip listed below)
***http://www.iec.dk/products/csrchipsinfo.asp?id=41
***http://www.iec.dk/products/csrchipdescription.asp?C_D_Id=36
***http://www.nordfield.com/downloads/datasheets-components/BlueCore4.pdf
***https://cdn.sparkfun.com/datasheets/Wireless/Bluetooth/CSR-BC417-datasheet.pdf (BC417 external)
***http://www.czwtech.com/uploadfile/cfile/201211994421454.pdf (BC41B rom)
***https://hackaday.com/2014/05/18/firmware-for-cheap-bluetooth-modules/
**Memory = SST SST39VF800A-70-4I-M1QE (Flash - NOR, 8Mb (512k x 16), Multipurpose, 3.0V, 70nS)
***48-Ball Very-Very-Thin-Profile, Fine-Pitch Ball Grid Array (WFBGA) 4mm x 6mm
***http://www.microchip.com/wwwproducts/en/SST39VF800A
***http://ww1.microchip.com/downloads/en/DeviceDoc/25001A.pdf
**Crystal = 26MHz
**Capacitors count = 26
**Inductors count = 2
**Resistors count = 2
<div style="clear:both;"></div>
<div style="clear:both;"></div>


*SPI
==== ALPS 203A ====
**The SPI port can be used for system debugging. It can also be used for programming the Flash memory
**The DFU boot loader must be loaded into the Flash device before the UART or USB interfaces can be used. This initial flash programming can be done via the SPI
 
*UART
**BlueCore4-External UART interface provides a simple mechanism for communicating with other serial devices using the RS232 protocol. Four signals are used to implement the UART function. When BlueCore4-External is connected to another digital device, UART_RX and UART_TX transfer data between the two devices. The remaining two signals, UART_CTS and UART_RTS, can be used to implement RS232 hardware flow control where both are active low indicators
**http://www.summitdata.com/blog/uart-flow-control-rtscts-necessary-proper-operation-wireless-modules/
**http://simmonmt.blogspot.com.es/2011/05/rtscts-handshaking-and-waveforms.html
 
===== ALPS 203A =====
<div style="float:right">[[File:ALPS 203A.jpg|200px|thumb|right|ALPS 203A]]</div>
<div style="float:right">[[File:ALPS 203A.jpg|200px|thumb|right|ALPS 203A]]</div>
Used in boards: V2
<div style="clear:both;"></div>
<div style="clear:both;"></div>


===== ALPS 502A =====
==== ALPS 303A ====
Used in "some" [[Wireless Keypad]] boards
 
==== 40 pins (12x15mm) ====
===== ALPS 303A =====
<div style="float:right">[[File:ALPS 303A.jpg|200px|thumb|right|ALPS 303A]]</div>
<div style="float:right">[[File:ALPS 303A.jpg|200px|thumb|right|ALPS 303A]]</div>
Used in boards: V2.5, VX
Used in VX boards
<div style="clear:both;"></div>
<div style="clear:both;"></div>


===== ALPS 113A =====
==== ALPS 113A ====
Used in boards: V3.5X 1.14 only, seems to be a variant of the ALPS 413A below
Used in V3.5X 1.14 boards only, seems to be a variant of the ALPS 413A below


===== ALPS 413A =====
==== ALPS 413A ====
<div style="float:right">[[File:ALPS 413A.jpg|200px|thumb|right|ALPS 413A]]</div>
<div style="float:right">[[File:ALPS 413A.jpg|200px|thumb|right|ALPS 413A]]</div>
Used in boards: V3.5X, VX3, VX4, and "some" [[Move Navigation Controller]] boards
Used in V3.5X, VX3, VX4 boards, and "some" [[Move Navigation Controller]] boards


The pin numbers can be seen on V3.5X boards
The pin numbers can be seen on V3.5X boards
Line 1,537: Line 1,384:
! Pin # !! Name !! Port !! Description
! Pin # !! Name !! Port !! Description
|-
|-
| 1 || {{cellcolors|#000000|#ffffff}} GND_SHIELD || || To ground (corner solder point for the interferences metal shield)
| 1 || {{cellcolors|#000000|#ffffff}} GND || || To ground
|-
|-
| 2 || {{cellcolors|#ff9933}} V_BT_DETECT ? ||  || Diode to ground, and 15K resistor to pin 3
| 2 || {{cellcolors|#ff9933}} V_WEIRD ? ||  || Diode to ground, and 15K resistor to pin 3
|-
|-
| 3 || {{cellcolors|#ff9933}} V_BT ? ||  || To Texas Instruments SN89062 pin 7, and to TP10 in VX4 boards
| 3 || {{cellcolors|#ff9933}} V_BT ? ||  || To Texas Instruments SN89062 pin 7, and to TP10 in VX4 boards
Line 1,547: Line 1,394:
| 5 || {{cellcolors|#555555|#ffffff}} SLAVES_RESET ||  || To <abbr title="47ohm in VX4 boards">resistor network</abbr>, and then to Texas Instruments SN84001 pin 2 and to Toshiba T6UN6EFG pin 11 in VX4 boards
| 5 || {{cellcolors|#555555|#ffffff}} SLAVES_RESET ||  || To <abbr title="47ohm in VX4 boards">resistor network</abbr>, and then to Texas Instruments SN84001 pin 2 and to Toshiba T6UN6EFG pin 11 in VX4 boards
|-
|-
| 6 || {{cellcolors|#6699ff}} <abbr title="either... TX, RX, RTS, or CTS">BT_UART_2</abbr> ? ||  ||  To Toshiba T6UN6EFG pin 15 through <abbr title="47ohm in VX4 boards">resistor network</abbr>
| 6 || {{cellcolors|#ffddcc}} BT_UART_RX ? ||  ||  To Toshiba T6UN6EFG pin 15 through <abbr title="47ohm in VX4 boards">resistor network</abbr>
|-
|-
| 7 || {{cellcolors|#6699ff}} <abbr title="either... TX, RX, RTS, or CTS">BT_UART_4</abbr> ? ||  || To Toshiba T6UN6EFG pin 17
| 7 || {{cellcolors|#ffddcc}} BT_UART_UNK ? ||  || To Toshiba T6UN6EFG pin 17
|-
|-
| 8 || {{cellcolors|#6699ff}} <abbr title="either... TX, RX, RTS, or CTS">BT_UART_1</abbr> ? ||  || To Toshiba T6UN6EFG pin 14 through <abbr title="33ohm in VX4 boards">resistor</abbr>
| 8 || {{cellcolors|#ffddcc}} BT_UART_SELECT ? ||  || To Toshiba T6UN6EFG pin 14 through <abbr title="33ohm in VX4 boards">resistor</abbr>
|-
|-
| 9 || {{cellcolors|#6699ff}} <abbr title="either... TX, RX, RTS, or CTS">BT_UART_3</abbr> ? ||  || To Toshiba T6UN6EFG pin 16 through <abbr title="47ohm in VX4 boards">resistor network</abbr>
| 9 || {{cellcolors|#ffddcc}} BT_UART_TX ? ||  || To Toshiba T6UN6EFG pin 16 through <abbr title="47ohm in VX4 boards">resistor network</abbr>
|-
|-
| 10 || {{cellcolors|#e0e0e0}} USB_DATA+ ||  || USB connector through <abbr title="23ohm in VX4 boards">resistor</abbr> (and TP3 in VX4 boards)
| 10 || {{cellcolors|#e0e0e0}} USB_DATA+ ||  || USB connector through <abbr title="23ohm in VX4 boards">resistor</abbr> (and TP3 in VX4 boards)
Line 1,559: Line 1,406:
| 11 || {{cellcolors|#33ff33}} USB_DATA- ||  || USB connector through <abbr title="23ohm in VX4 boards">resistor</abbr> (and TP2 in VX4 boards)
| 11 || {{cellcolors|#33ff33}} USB_DATA- ||  || USB connector through <abbr title="23ohm in VX4 boards">resistor</abbr> (and TP2 in VX4 boards)
|-
|-
| 12 || {{cellcolors|#000000|#ffffff}} GND_SHIELD || || To ground (corner solder point for the interferences metal shield)
| 12 || {{cellcolors|#000000|#ffffff}} GND || || To ground
|-
|-
| colspan="4" {{cellcolors|lightgrey}}
| 13 || {{cellcolors|#000000|#ffffff}} GND || || To ground
|-
|-
| 13 || {{cellcolors|#000000|#ffffff}} GND_SHIELD || || To ground (corner solder point for the interferences metal shield)
| 14 || || || To Toshiba T6UN6EFG pin 18
|-
|-
| 14 || {{cellcolors|#3366ff}} BT_UNK_1 ||  || To Toshiba T6UN6EFG pin 18
| 15 || ||  || To Texas Instruments SN89062 pin 19
|-
|-
| 15 || {{cellcolors|#000099|#FF4500}} POWER_BT_UNK ? ||  || To Texas Instruments SN89062 pin 19
| 16 || ||  || To Texas Instruments SN89062 pin 14
|-
|-
| 16 || {{cellcolors|#000099|#FF4500}} POWER_BT_UNK ? ||  || To Texas Instruments SN89062 pin 14
| 17 || {{cellcolors|#e0c0b0}} UNK_SERVICE_CONNECTOR_1 ||  || To missing connector in PP4 and V2 boards... or... TP49 in V3.5X boards... or... TP76 in VX3 boards... or unlabeled testpoint in VX4, VX5, VX6 boards
|-
|-
| 17 || {{cellcolors|#ccccff|#000099}} <abbr title="either... CSB, CLK, MOSI, or MISO">BT_SPI_3</abbr> ? ||  || To debug missing connector in PP4 and V2 boards... or... TP49 in V3.5X boards... or... TP76 in VX3 boards... or unlabeled testpoint in VX4, VX5, VX6 boards
| 18 || {{cellcolors|#e0c0b0}} UNK_SERVICE_CONNECTOR_2 ||  || To missing connector in PP4 and V2 boards... or... TP48 in V3.5X boards... or... TP75 in VX3 boards... or unlabeled testpoint in VX4, VX5, VX6 boards
|-
|-
| 18 || {{cellcolors|#ccccff|#000099}} <abbr title="either... CSB, CLK, MOSI, or MISO">BT_SPI_2</abbr> ? ||  || To debug missing connector in PP4 and V2 boards... or... TP48 in V3.5X boards... or... TP75 in VX3 boards... or unlabeled testpoint in VX4, VX5, VX6 boards
| 19 || {{cellcolors|#e0c0b0}} UNK_SERVICE_CONNECTOR_3 ||  || To missing connector in PP4 and V2 boards... or... TP50 in V3.5X boards... or... TP77 in VX3 boards... or unlabeled testpoint in VX4, VX5, VX6 boards
|-
|-
| 19 || {{cellcolors|#ccccff|#000099}} <abbr title="either... CSB, CLK, MOSI, or MISO">BT_SPI_4</abbr> ? || || To debug missing connector in PP4 and V2 boards... or... TP50 in V3.5X boards... or... TP77 in VX3 boards... or unlabeled testpoint in VX4, VX5, VX6 boards
| 20 || {{cellcolors|#000000|#ffffff}} GND || || To ground
|-
|-
| 20 || {{cellcolors|#000000|#ffffff}} GND_SHIELD || || To ground (corner solder point for the interferences metal shield)
| 21 || {{cellcolors|#000000|#ffffff}} GND || || To ground
|-
|-
| colspan="4" {{cellcolors|lightgrey}}
| 22 || {{cellcolors|#e0c0b0}} UNK_SERVICE_CONNECTOR_4 ||  || To missing connector in PP4 and V2 boards... or... TP47 in V3.5X boards... or... TP74 in VX3 boards... or unlabeled testpoint in VX4, VX5, VX6 boards
|-
| 21 || {{cellcolors|#000000|#ffffff}} GND_SHIELD || || To ground (corner solder point for the interferences metal shield)
|-
| 22 || {{cellcolors|#ccccff|#000099}} <abbr title="either... CSB, CLK, MOSI, or MISO">BT_SPI_1</abbr> ? ||  || To debug missing connector in PP4 and V2 boards... or... TP47 in V3.5X boards... or... TP74 in VX3 boards... or unlabeled testpoint in VX4, VX5, VX6 boards
|-
|-
| 23 || {{cellcolors|#000000|#ffffff}} GND || || To ground
| 23 || {{cellcolors|#000000|#ffffff}} GND || || To ground
|-
|-
| 24 || {{cellcolors|lightgrey}} N/C ? ||  || Not connected ?
| 24 || ||  ||  
|-
|-
| 25 || {{cellcolors|#ff9933}} V_STBY ||  || To Texas Instruments SN89062 pin 22
| 25 || {{cellcolors|#ff9933}} V_STBY ||  || To Texas Instruments SN89062 pin 22
Line 1,595: Line 1,438:
| 27 || {{cellcolors|#ff9933}} V_STBY ||  || To Texas Instruments SN89062 pin 22
| 27 || {{cellcolors|#ff9933}} V_STBY ||  || To Texas Instruments SN89062 pin 22
|-
|-
| 28 || {{cellcolors|#3366ff}} BT_UNK_2 ||  || Toshiba T6UN6EFG pin 19
| 28 || ||  || Toshiba T6UN6EFG pin 19
|-
|-
| 29 || {{cellcolors|lightgrey}} N/C ? ||  || Not connected ?
| 29 || ||  ||  
|-
|-
| 30 || {{cellcolors|#000000|#ffffff}} GND || || To ground
| 30 || {{cellcolors|#000000|#ffffff}} GND || || To ground
|-
|-
| 31 || {{cellcolors|lightgrey}} N/C ? ||  || Not connected ?
| 31 || ||  ||  
|-
|-
| 32 || {{cellcolors|#000000|#ffffff}} GND_SHIELD || || To ground (corner solder point for the interferences metal shield)
| 32 || {{cellcolors|#000000|#ffffff}} GND || || To ground
|-
|-
| colspan="4" {{cellcolors|lightgrey}}
| 33 || {{cellcolors|#000000|#ffffff}} GND || || To ground
|-
|-
| 33 || {{cellcolors|#000000|#ffffff}} GND_SHIELD || || To ground (corner solder point for the interferences metal shield)
| 34 || {{cellcolors|#aaffff}} ANT ||  || Antenna
|-
| 34 || {{cellcolors|#44bbbb}} ANTENNA ||  || Antenna
|-
|-
| 35 || {{cellcolors|#000000|#ffffff}} GND || || To ground
| 35 || {{cellcolors|#000000|#ffffff}} GND || || To ground
|-
|-
| 36 || {{cellcolors|lightgrey}} N/C ? ||  || Not connected ?
| 36 || ||  ||  
|-
|-
| 37 || {{cellcolors|#000099|#FF4500}} POWER_BT_UNK ? ||  || To Texas Instruments SN89062 pin 13
| 37 || ||  || To Texas Instruments SN89062 pin 13
|-
|-
| 38 || {{cellcolors|#000099|#FF4500}} POWER_BT_UNK ? ||  || To Texas Instruments SN89062 pin 15
| 38 || ||  || To Texas Instruments SN89062 pin 15
|-
|-
| 39 || {{cellcolors|lightgrey}} N/C ? ||  || Not connected ?
| 39 || ||  ||  
|-
|-
| 40 || {{cellcolors|#000000|#ffffff}} GND_SHIELD || || To ground (corner solder point for the interferences metal shield)
| 40 || {{cellcolors|#000000|#ffffff}} GND || || To ground
|}
|}


===== ALPS 503A =====
==== ALPS 503A ====
Used in "some" [[Move Motion Controller]] boards
Used in "some" [[Move Motion Controller]] boards


==== 48 pins (11x11mm) ====
==== ALPS 603A ====
===== ALPS 603A =====
<div style="float:right">[[File:ALPS 603A.jpg|200px|thumb|left|ALPS 603A]][[File:ALPS 603A VX7.jpg|200px|thumb|right|ALPS 603A VX7]]</div>
<div style="float:right">[[File:ALPS 603A.jpg|200px|thumb|left|ALPS 603A]][[File:ALPS 603A VX7.jpg|200px|thumb|right|ALPS 603A VX7]]</div>
Used in boards: VX5, VX6, VX7
Used in VX5, VX6, VX7 boards
 
Without knowing what is inside, just based on the size of this BT module... the logic "chip" inside probably is a bluecore4-ROM based model (or 5-ROM series), this means the flash memory is integrated inside the "chip"
 
The pin numbers can be seen on VX7 boards
 
{|class="wikitable"
|+ALPS 603A Pinout
! Pin # !! Name !! Description
|-
| 1 || Not connected || In VX 5 0.06
|-
| 2 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
|-
| 3 || {{cellcolors|#ffff99|#FF4500}} BUTTON_DIGITAL_PLAYSTATION || In VX 5 0.06: To Toshiba '''T6UN6EFG pin 68''' (which is also PS button) with a <abbr title="4x resistor network RN5 100K to ground">pull-down resistor</abbr>
|-
| 4 || {{cellcolors|#000099|#FF4500}} POWER_BT_UNK ? || To Texas Instruments '''A6044A0 pin 41''' with a <abbr title="4x resistor network 47K to ground, located next to the BT SPI testpoints in VX5">pull-down resistor</abbr>
|-
| 5 || {{cellcolors|#3366ff}} BT_UNK_2 || In VX 5 0.06: To To Toshiba ''' T6UN6EFG pin 19''' with a <abbr title="4x resistor network RN5 100K to ground">pull-down resistor</abbr>
|-
| 6 || {{cellcolors|#ff9933}} V_STBY || To Texas Instruments '''A6044A0 pin 46''' ('''TP10''' in VX5)
|-
| 7 || {{cellcolors|#ff9933}} V_STBY || To Texas Instruments '''A6044A0 pin 46''' ('''TP10''' in VX5)
|-
| 8 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
|-
| 9 || Not connected || In VX 5 0.06
|-
| 10 || {{cellcolors|#000099|#FF4500}} POWER_BT_UNK ? || To Texas Instruments '''A6044A0 pin 38''' and capacitor to ground ('''C19''' in VX5)
|-
| 11 || {{cellcolors|#000099|#FF4500}} POWER_BT_UNK ? || To Texas Instruments '''A6044A0 pin 37''' with a <abbr title="4x resistor network 47K to standby power rail, located next to the BT SPI testpoints in VX5">pull-up resistor</abbr> and capacitor to ground ('''C15''' in VX5)
|-
| 12 || {{cellcolors|#000000|#ffffff}} <abbr title="Corner ground connected to the interferences metal shield">GND_SHIELD</abbr> || To '''ground'''
|-
| colspan="4" {{cellcolors|lightgrey}}
|-
| 13 || {{cellcolors|#000000|#ffffff}} <abbr title="Corner ground connected to the interferences metal shield">GND_SHIELD</abbr> || To '''ground'''
|-
| 14 || {{cellcolors|#3366ff}} BT_UNK_2 || To Toshiba '''T6UN6EFG pin 19'''; In VX 5 0.06 to ground only
|-
| 15 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
|-
| 16 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
|-
| 17 || {{cellcolors|#44bbbb}} ANTENNA || Antenna
|-
| 18 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
|-
| 19 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
|-
| 20 || {{cellcolors|#000099|#FF4500}} POWER_BT_UNK ? || To Texas Instruments '''A6044A0 pin 36''' with a <abbr title="4x resistor network 47K to ground, located next to the BT SPI testpoints in VX5">pull-down resistor</abbr> and capacitor to ground ('''C18''' in VX5)
|-
| 21 || {{cellcolors|#ff9933}} V_BT ? || Through 15k resistor with a <abbr title="4x resistor network RN5 100K to ground">pull-down resistor</abbr> creating 15k to 100k voltage divider to Texas Instruments '''A6044A0 pin 7''' ('''TP11''' in VX5)
|-
| 22 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
|-
| 23 || {{cellcolors|#ff9933}} V_STBY || To Texas Instruments '''A6044A0 pin 46''' ('''TP10''' in VX5)
|-
| 24 || {{cellcolors|#000000|#ffffff}} <abbr title="Corner ground connected to the interferences metal shield">GND_SHIELD</abbr> || To '''ground'''
|-
| colspan="4" {{cellcolors|lightgrey}}
|-
| 25 || {{cellcolors|#000000|#ffffff}} <abbr title="Corner ground connected to the interferences metal shield">GND_SHIELD</abbr> || To '''ground'''
|-
| 26 || {{cellcolors|#555555|#ffffff}} SLAVES_RESET || <abbr title="4x resistor network 47ohm">Resistor network</abbr> ('''RN4''' in VX5 and VX7) to Toshiba '''T6UN6EFG pin 11'''... <abbr title="to Texas Instruments A6044A0 pin 35 ?">and...</abbr> ?
|-
| 27 || {{cellcolors|#000000|#ffffff}} GND || To '''ground''' (in VX5). <abbr title="Most probably this pin of the resistor network in VX7 is ground">Or to 4x resistor network ('''RN4''' in VX7)</abbr>
|-
| 28 || {{cellcolors|#77aaff}} <abbr title="either... TX, RX, RTS, or CTS">BT_UART_3</abbr> ? || <abbr title="4x resistor network 47ohm">Resistor network</abbr> ('''RN4''' in VX5 and VX7) to Toshiba '''T6UN6EFG pin 16'''
|-
| 29 || {{cellcolors|#3366ff}} BT_UNK_1 || To Toshiba '''T6UN6EFG pin 18'''
|-
| 30 || {{cellcolors|#6699ff}} <abbr title="either... TX, RX, RTS, or CTS">BT_UART_2</abbr> ? || <abbr title="4x resistor network 47ohm">Resistor network</abbr> ('''RN4''' in VX5 and VX7) to Toshiba '''T6UN6EFG pin 15'''
|-
| 31 || {{cellcolors|#6699ff}} <abbr title="either... TX, RX, RTS, or CTS">BT_UART_4</abbr> ? || To Toshiba '''T6UN6EFG pin 17'''
|-
| 32 || {{cellcolors|#6699ff}} <abbr title="either... TX, RX, RTS, or CTS">BT_UART_1</abbr> ? || <abbr title="33ohm in VX5 boards">Resistor</abbr> ('''R11''' in VX5, '''R10''' in VX7) to Toshiba '''T6UN6EFG pin 14'''
|-
| 33 || Not connected || In VX 5 0.06
|-
| 34 || {{cellcolors|#e0e0e0}} USB_DATA+ || To '''USB connector''' through 22ohm <abbr title="To pass the USB compliance tests is required a series termination resistor in the data line. This resistor also works as an ElectroMagnetic Interference filter">'''termination/EMI''' resistor</abbr> ('''R7''' in VX7), and to <abbr title="ElectroStatic Discharge filter, 5 pins">'''ESD filter pin 1'''</abbr>. (and '''TP3''' in VX5, unlabeled testpoint in VX7)
|-
| 35 || {{cellcolors|#33ff33}} USB_DATA- || To '''USB connector''' through 22ohm <abbr title="To pass the USB compliance tests is required a series termination resistor in the data line. This resistor also works as an ElectroMagnetic Interference filter">'''termination/EMI''' resistor</abbr> ('''R9''' in VX7), and to <abbr title="ElectroStatic Discharge filter, 5 pins">'''ESD filter pin 5'''</abbr>. (and '''TP2''' in VX5, unlabeled testpoint in VX7)
|-
| 36 || {{cellcolors|#000000|#ffffff}} <abbr title="Corner ground connected to the interferences metal shield">GND_SHIELD</abbr> || To '''ground'''
|-
| colspan="4" {{cellcolors|lightgrey}}
|-
| 37 || Not connected || In VX 5 0.06
|-
| 38 || {{cellcolors|#ff9933}} V_BT ? || To Texas Instruments '''A6044A0 pin 7''' ('''TP11''' in VX5) and to other BT pin 21 through 15k resistor and then through 100K resistor network RN5 to ground
|-
| 39 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
|-
| 40 || {{cellcolors|#ccccff|#000099}} BT_SPI_SS || ('''TP25''' in VX7)
|-
| 41 || {{cellcolors|#ccccff|#000099}} BT_SPI_MOSI || ('''TP24''' in VX7)
|-
| 42 || {{cellcolors|#ccccff|#000099}} BT_SPI_CLK || ('''TP26''' in VX7)
|-
| 43 || {{cellcolors|#ccccff|#000099}} BT_SPI_MISO || ('''TP23''' in VX7)
|-
| 44 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
|-
| 45 || Not connected || In VX 5 0.06
|-
| 46 || Not connected || In VX 5 0.06
|-
| 47 || {{cellcolors|#000000|#ffffff}} GND || To '''ground'''
|-
| 48 || Not connected || In VX 5 0.06
|}
 
==== Onboard (not a module) ====
===== Cambridge Silicon Radio unknown =====
<div style="float:right">[[File:Cambridge Silicon Radio BT bluecore unknown.jpg|200px|thumb|right|Cambridge Silicon Radio BT bluecore unknown]]</div>
Used in boards: VX8 only
 
This version of the logic "chip" probably is pretty similar (or exactly the same) than the one used inside the previous ALPS 603A BT module, the difference is the crystal and the "chip" itself has been moved out of the "old" BT modules PCB, that BT module PCB had 6 layers in previous versions and the dualshock 3 PCB had 2 layers. To make this change posible the PCB of VX8 boards is multilayer (there are a lot of traces "hidden" connected to the BT "chip")
<!--Actually, VX8 board doesnt have a MCU (the toshiba main controller was removed, wtf)... this is very weird, it means everything is connected to the bluecore chip... so is doing a lot more than previous versions -->
<div style="clear:both;"></div>
<div style="clear:both;"></div>


Line 1,755: Line 1,476:
[[File:Dualshock 3 fake (leds light transpassing the plastic case).jpg|400px|thumb|right| Dualshock 3 fake (leds light transpassing the plastic case)]]
[[File:Dualshock 3 fake (leds light transpassing the plastic case).jpg|400px|thumb|right| Dualshock 3 fake (leds light transpassing the plastic case)]]


*The SONY logo on the top of a counterfeit controller will not be aligned correctly with a original controller.
*The SONY logo on the top of a counterfeit controller will not be aligned correctly with a originall controller.


*Different sticker label
*Different sticker label
Line 1,773: Line 1,494:
*Leds
*Leds
**The LEDs lights on the controller that signify which Player it is controlling will not be flush with the outside shell. Official controllers are relatively level all the way across. Some controllers may have minor protrusion of the LEDs, though this should not be significant.
**The LEDs lights on the controller that signify which Player it is controlling will not be flush with the outside shell. Official controllers are relatively level all the way across. Some controllers may have minor protrusion of the LEDs, though this should not be significant.
**When you turn on a counterfeit the controller, the flashing red lights on the outside will actually shine THROUGH the casing of the device, something that would never happen on an official product.
**When you turn on a counterfeit the controller, the flashing red lights on the outside will actually shine THROUGH the casing of the device, something that would never happen on an official product.  
**When battery is low on the counterfeit controllers, it may repeatedly show the low battery notification on your Playstation multiple times.


*Syncing
*Syncing
**If you have consistent trouble wirelessly syncing your controller to your PS3, the device may be counterfeit.
**If you have consistent trouble wirelessly syncing your controller to your PS3, the device may be counterfeit.
* No pressure-sensitive buttons, some games might not even go past the title screen. An example is Metal Gear 2/3 from the Metal Gear Solid HD collection, selecting any of those games will either get you stuck in the title screen (MGS2) or will not function properly (MGS3).


From: http://www.ps3hax.net/showthread.php?p=574042#post574042
From: http://www.ps3hax.net/showthread.php?p=574042#post574042
Line 1,817: Line 1,535:
== Nefarius tools for use of controller on PC ==
== Nefarius tools for use of controller on PC ==


BthPS3
ScpToolkit  
 
* https://docs.nefarius.at/projects/BthPS3/ ( Windows 10/11 Bluetooth driver for DS3)
 
DsHidMini
 
* https://docs.nefarius.at/projects/DsHidMini/ (Windows 10/11 driver for DS3 with various different modes of operation: PCSX2 / DS4 Windows / SXS (Steam, RCPS3) / Xinput)
 
ScpToolkit - Discontinued
* https://github.com/nefarius/ScpToolkit (Windows Driver and XInput Wrapper for Sony DualShock 3/4 Controllers)
* https://github.com/nefarius/ScpToolkit (Windows Driver and XInput Wrapper for Sony DualShock 3/4 Controllers)
* [http://forums.pcsx2.net/Thread-ScpToolkit-XInput-Wrapper-aka-ScpServer-Reloaded ScpToolkit XInput Wrapper aka ScpServer Reloaded on forums.pcsx2.net]
* [http://forums.pcsx2.net/Thread-ScpToolkit-XInput-Wrapper-aka-ScpServer-Reloaded ScpToolkit XInput Wrapper aka ScpServer Reloaded on forums.pcsx2.net]
FireShock - Discontinued
FireShock
* https://github.com/nefarius/FireShock (Bluetooth is not supported yet, USB only as of 09/2017)
* https://github.com/nefarius/FireShock (Bluetooth is not supported yet, USB only as of 09/2017)
* [http://forums.pcsx2.net/Thread-FireShock-native-USB-Windows-Driver-for-Sony-DualShock-Controllers FireShock on forums.pcsx2.net]
* [http://forums.pcsx2.net/Thread-FireShock-native-USB-Windows-Driver-for-Sony-DualShock-Controllers FireShock on forums.pcsx2.net]
Line 1,839: Line 1,549:


== Other ==
== Other ==
*nice PCB overview of revisions: http://forums.xbox-scene.com/lofiversion/index.php/t648322.html - offline forum
* nice PCB overview of revisions: http://forums.xbox-scene.com/lofiversion/index.php/t648322.html http://forums.xbox-scene.com/index.php?/topic/648322-ps3-controller-versions-and-tp-spots/ http://s50.photobucket.com/user/RDCXBG/library/PS3%20Six-Axis%20and%20DS3
*http://forums.xbox-scene.com/index.php?/topic/648322-ps3-controller-versions-and-tp-spots/ - offline forum
*http://s50.photobucket.com/user/RDCXBG/library/PS3%20Six-Axis%20and%20DS3 - RDC photobucket
*[http://www63.zippyshare.com/v/32870351/file.html sony-ps3-controller.pdf] - transcription of the (missing) RDC thread on (defunct) xbox-scene forum


{{Peripherals}}<noinclude>
{{Peripherals}}<noinclude>[[Category:Main]]</noinclude>
[[Category:Main]]
</noinclude>
Please note that all contributions to PS3 Developer wiki are considered to be released under the GNU Free Documentation License 1.2 (see PS3 Developer wiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following hCaptcha:

Cancel Editing help (opens in new window)