Editing DualShock 3

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 594: Line 594:
The reason why sony chose this component (even being over the requirements of the playtation 3 controller) is because seems to be very accurate in voltage regulations and it has some additional features to control and monitor the charging processes
The reason why sony chose this component (even being over the requirements of the playtation 3 controller) is because seems to be very accurate in voltage regulations and it has some additional features to control and monitor the charging processes


*'''Battery pre-conditioning'''
*BATTERY PRE-CONDITIONING
**If the battery voltage falls below a threshold during a charge cycle, the bqTINY-II applies a precharge current to the battery. This feature revives deeply discharged cells. The resistor connected between the '''ISET1''' and VSS determines the precharge rate. The bqTINY-II activates a safety timer during the conditioning phase. If threshold is not reached within the timer period, the bqTINY-II turns off the charger and asserts a FAULT code on the STATx pins
**If the battery voltage falls below a threshold during a charge cycle, the bqTINY-II applies a precharge current to the battery. This feature revives deeply discharged cells. The resistor connected between the '''ISET1''' and VSS determines the precharge rate. Note that this applies to both AC and USB charging. The bqTINY-II activates a safety timer during the conditioning phase. If threshold is not reached within the timer period, the bqTINY-II turns off the charger and asserts a FAULT code on the STATx pins


*'''Battery charge current'''
*BATTERY CHARGE CURRENT
**The bqTINY-II offers on-chip current regulation with a programmable set point. The resistor connected between the '''ISET1''' and VSS determines the AC charge rate
**The bqTINY-II offers on-chip current regulation with a programmable set point. The resistor connected between the '''ISET1''' and VSS determines the AC charge rate


*'''Battery voltage regulation'''
*BATTERY VOLTAGE REGULATION
**The voltage regulation feedback is through the OUT pin. This input is tied directly to the positive side of the battery pack. The bqTINY-II monitors the battery-pack voltage between the OUT and VSS pins. When the battery voltage rises to a threshold, the voltage-regulation phase begins and the charging current begins to taper down. As a safety backup, the bqTINY-II also monitors the charge time. If the charge is not terminated within a time period the bqTINY-II turns off the charger and asserts a FAULT code on the STATx pins
**The voltage regulation feedback is through the OUT pin. This input is tied directly to the positive side of the battery pack. The bqTINY-II monitors the battery-pack voltage between the OUT and VSS pins. When the battery voltage rises to a threshold, the voltage-regulation phase begins and the charging current begins to taper down. As a safety backup, the bqTINY-II also monitors the charge time. If the charge is not terminated within a time period the bqTINY-II turns off the charger and asserts a FAULT code on the STATx pins


*'''Charge taper detection, termination, and recharge'''
*CHARGE TAPER DETECTION, TERMINATION AND RECHARGE
**The bqTINY-II monitors the charging current during the voltage-regulation phase. Once the taper threshold is detected, the bq24027 terminates the charge. There is no taper timer for this version. The resistor connected between the '''ISET1''' and VSS determines the taper-detect level for AC input. In addition to taper-current detection, the bqTINY-II terminates charge if the charge current falls below the a threshold. This feature allows quick recognition of a battery-removal condition, or insertion of a fully charged battery. Note that the charge timer is bypassed for this feature. The resistor connected between the '''ISET1''' and VSS determines the taper detection level
**The bqTINY-II monitors the charging current during the voltage-regulation phase. Once the taper threshold is detected, the bq24027 terminates the charge. There is no taper timer for this version. The resistor connected between the '''ISET1''' and VSS determines the taper-detect level for AC input. In addition to taper-current detection, the bqTINY-II terminates charge if the charge current falls below the a threshold. This feature allows quick recognition of a battery-removal condition, or insertion of a fully charged battery. Note that the charge timer is bypassed for this feature. The resistor connected between the ISET1 and VSS determines the taper detection level


*'''Sleep mode'''
*SLEEP MODE
**The bqTINY-II enters low-power sleep mode if both AC and USB are removed from the circuit. This feature prevents draining the battery in the absence of input supply
**The bqTINY-II enters low-power sleep mode if both AC and USB are removed from the circuit. This feature prevents draining the battery in the absence of input supply


Line 634: Line 634:
|}
|}


*'''PG''': The open-drain PG (Power Good, pin 8) indicates when the "power source 1" (pin 1) is present. The output turns ON when a valid voltage is detected. This output is turned off in the sleep mode. The PG pin can be used to drive a LED or to communicate to the host processor
*PG
**The open-drain PG (Power Good, pin 8) indicates when the "power source 1" (pin 1) is present. The output turns ON when a valid voltage is detected. This output is turned off in the sleep mode. The PG pin can be used to drive a LED or to communicate to the host processor


*'''CE''': The CE digital input (Charge Enable, pin 9) is used to disable or enable the charge process. A low-level signal on this pin enables the charge. A high-level signal disables the charge, and places the device in a low-power mode. A high-to-low transition on this pin also resets all timers and timer fault conditions
*CE
**The CE digital input (Charge Enable, pin 9) is used to disable or enable the charge process. A low-level signal on this pin enables the charge. A high-level signal disables the charge, and places the device in a low-power mode. A high-to-low transition on this pin also resets all timers and timer fault conditions


*'''ISET1''': The bqTINY-II offers on-chip current regulation with a programmable set point. The resistor connected between the ISET1 and VSS, determines the "power source 1" charge rate
*ISET1
**The bqTINY-II offers on-chip current regulation with a programmable set point. The resistor connected between the ISET1 and VSS, determines the "power source 1" charge rate


*'''STAT1''' and '''STAT2''': The open-drain STAT1 and STAT2 outputs indicate various charger operations as shown in the following table. These status pins can be used to drive LEDs or communicate to the host processor. Note that OFF indicates the open-drain transistor is turned off
*STAT1 and STAT2
**The open-drain STAT1 and STAT2 outputs indicate various charger operations as shown in the following table. These status pins can be used to drive LEDs or communicate to the host processor. Note that OFF indicates the open-drain transistor is turned off


{| class="wikitable"
{| class="wikitable"
Please note that all contributions to PS3 Developer wiki are considered to be released under the GNU Free Documentation License 1.2 (see PS3 Developer wiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following hCaptcha:

Cancel Editing help (opens in new window)